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Abstract. We propose a “hardware–software” framework that offers a new perspec-
tive on the mechanisms of long-run economic growth. Based on first principles, it as-
sumes that output is generated through purposefully initiated physical action. Produc-
tion needs energy and information, provided by respective factors: hardware (“brawn”),
including physical labor, physical capital and compute, and software (“brains”), encom-
passing human cognitive work and digital software, in particular artificial intelligence
(AI). Hardware and software are essential and complementary in production, whereas
their constituent components are mutually substitutable. The framework generalizes the
neoclassical model with capital and labor, models with capital–skill complementarity and
skill-biased technical change, and selected unified growth theories. We provide an empir-
ical quantification of hardware and software in the U.S., 1968–2019, documenting a rising
share of physical capital in hardware (mechanization) and digital software in software (au-
tomation); as a whole software has been growing systematically faster than hardware.
Accumulation of human capital and digital software were the key contributors to U.S.
economic growth. Looking into the future through the lens of the hardware–software
framework, we expect full automation of production by transformative AI and an order-
of-magnitude acceleration of economic growth.
Keywords: production function, complementarity, mechanization, automation, artificial
intelligence, transformative AI.
JEL codes: O30, O40, O41.

*Financial support from the Polish National Science Center (Narodowe Centrum Nauki) under
grants OPUS 14 No. 2017/27/B/HS4/00189 (theory) and OPUS 19 No. 2020/37/B/HS4/01302
(evidence) is gratefully acknowledged. Thanks to Michał Gradzewicz, Anton Korinek and Tamay
Besiroglu for helpful suggestions. All errors are our responsibility.

†SGH Warsaw School of Economics, Poland. ORCiD: 0000-0003-2222-1691.
‡SGH Warsaw School of Economics, Poland. ORCiD: 0000-0003-1280-3014.
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I’m a physicist. We rank things by two parameters: energy and information.

Michio Kaku

1 Introduction

In any conceivable technological process, output is generated through physical
action requiring energy. It is a local reduction of entropy, and as such it does
not occur by chance but is purposefully initiated. In other words, producing
output requires both some physical action and some code, a set of instructions
describing and purposefully initiating the action. Therefore, at the highest level
of aggregation the two essential and complementary factors of production are
physical hardware (“brawn”), performing the action, and disembodied software
(“brains”), providing information on what should be done and how.

This basic observation has profound consequences. It underscores that the
fundamental complementarity between factors of production, derived from first
principles of physics, is cross cutting the conventional divide between capital and
labor. From the physical perspective, it matters whether it’s energy or informa-
tion, not if it’s human or machine (Figure 1). For any task at hand, physical capital
and human physical labor are fundamentally substitutable inputs, contributing
to hardware: they are both means of performing physical action. Analogously,
human cognitive work and digital software are also substitutes, making up the
software factor: they are alternative sources of instructions for the performed ac-
tion. It is hardware and software, not capital and labor, that are fundamentally
essential and mutually complementary.

Based on this observation the current paper develops a new macroeconomic
framework for modelling aggregate production and long-run economic growth.
We then demonstrate how it squares with historical data for the U.S. in 1968–2019
and what predictions it provides for the future.

Unfortunately, in data the fundamental distinction between hardware and
software is obscured by the fact that the human body has double duty: it contains
both muscles that perform physical action and a brain that stores and processes
information. When performing any task, we make use of both energy and infor-
mation, with varying intensity. The same can be said for modern digital devices,
such as computers, smartphones and robots, which also feature both hardware
and software. Prior to digital computers, though, all instructions were coming
from the human brain, making “software” synonymous with human cognitive
work. Therefore, while providing an overarching theoretical frame capable of
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Figure 1: Factors of production in the hardware–software framework.

guiding the narrative across all human history (Growiec, 2022a), the advantages
of the hardware–software framework are most clearly seen in the case of the cur-
rently unveiling digital era where information processing, communication and
storage are increasingly detached from the human brain.

The hardware–software framework has a number of distinctive advantages.
From the economic modelling perspective, it is a convenient tool for discussing
global long-run growth processes because, while rooted in first principles from
physics, it nests the following conventional models as special cases:

(i) the standard model of an industrial economy which uses capital and la-
bor (Solow, 1956) and respects Kaldor (1961) facts (this case is obtained by
assuming that all physical action is performed by machines, whereas all in-
formation processing is done by people),

(ii) a model of capital–skill complementarity and skill-biased technical change
(this case is obtained assuming that all information processing is done by
people),

(iii) a unified growth theory addressing the period of Industrial Revolution (fol-
lowing the arrival of machines with an external source of energy, able to
perform physical action),

(iv) a theory of inception and further development of the digital era (follow-
ing the arrival of programmable digital hardware – compute – and digital
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software, able to process information).

In the policy perspective, the hardware–software framework can inform the
debate on the future of global economic growth – whether we should expect secu-
lar stagnation (Jones, 2002; Gordon, 2016; Gomułka, 2023), balanced growth with
limited automation – “race against the machine” (Acemoglu and Restrepo, 2018),
accelerated growth with disruptive automation (Brynjolfsson and McAfee, 2014;
Brynjolfsson, Rock and Syverson, 2019; Trammell and Korinek, 2021) or techno-
logical singularity (Kurzweil, 2005; Bostrom, 2014; Roodman, 2020). In the base-
line scenario, the hardware–software framework predicts an acceleration of eco-
nomic growth, driven by broad-based AI-driven automation, culminating in the
emergence of transformative AI (Growiec, 2023b). The software factor is expected
to gradually decouple from human cognitive work and become proportional to
compute instead because digital software can be virtually costlessly copied and
thus can easily scale up to the level of available compute. Under constant re-
turns to scale and in the absence of further technological revolutions1, this would
gradually reduce the role of technical change augmenting human cognitive work
and eventually generate long-run endogenous growth by hardware (specifically,
compute) accumulation alone. In the limit, all production will be automated.

Having laid out the theory, we quantify its predictions empirically, using U.S.
data for 1968–2019. The empirical approach of the current study is to construct a
time series for hardware, consisting of human physical labor and physical capital,
and software, consisting of human cognitive work and digital software. To this
end, we decompose labor into its physical (manual) and cognitive components,
as well as isolate the hardware and software parts of capital investment. Our
calculations assume an exogenous rate of technological progress which, in line
with the theoretical setup, takes place in the domain of information and therefore
is software-augmenting.

We find a rising share of physical capital in hardware (mechanization) and dig-
ital software in software (automation) throughout the period 1968–2019. On top
of that, as a whole software has been growing systematically faster than hardware.
Using a nested constant elasticity of substitution (CES) production function spec-
ification, we also perform a growth accounting exercise which suggests that the
leading contributor to GDP growth in the U.S. has been the accumulation of hu-
man capital, followed by the accumulation of digital software.

Finally, we present the predictions of the hardware–software framework for
the future. We lay out the range of possible scenarios and argue why the scenario

1Given the observed pace of growth in computing power and AI capabilities, further techno-
logical revolutions are actually quite likely, though.
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allowing for full automation through transformative AI is our baseline. We con-
clude by discussing the implications of transformative AI for growth and factor
remuneration.

This paper is related to at least five strands of literature. First, the literature
on production function specification and estimation, in particular with capital–
skill complementarity, unbalanced growth, as well as investment-specific and
skill-biased technical change.2 Second, the literature on accounting for the accu-
mulation of information and communication technologies (ICT) and their broad
growth-enhancing role as a general purpose technology.3 Third, studies focusing
on automation and its impacts on productivity, employment, wages and factor
shares.4 Fourth, the literature on macroeconomic implications of development
of AI and autonomous robots.5 Last but not least, the voluminous literature on
R&D-based endogenous growth.6

The remainder of the paper is structured as follows. Section 2 provides mo-
tivation for the current study. Section 3 defines the factors of production in the
hardware–software framework and discusses the conceptual underpinnings of
the aggregate production function. Section 4 provides the empirical evidence.
Section 5 provides model-based predictions for the future. Section 6 concludes.

2Including among others Gordon (1990); Jorgenson (1995); Greenwood, Hercowitz and Krusell
(1997); Hercowitz (1998); Kumar and Russell (2002); Koop, Osiewalski and Steel (1999, 2000);
Krusell et al. (2000); Henderson and Russell (2005); Caselli and Coleman (2006); Klump, McAdam
and Willman (2007, 2012); Mućk (2017); McAdam and Willman (2018).

3Including among others Bresnahan and Trajtenberg (1995); Timmer and van Ark (2005); Jor-
genson (2005); Brynjolfsson and McAfee (2014); Gordon (2016); Brynjolfsson, Rock and Syverson
(2019); Aum, Lee and Shin (2018); Jones and Tonetti (2020); Farboodi and Veldkamp (2019); Nord-
haus (2021).

4Including among others Zeira (1998); Acemoglu and Autor (2011); Autor and Dorn (2013);
Graetz and Michaels (2018); Acemoglu and Restrepo (2018, 2019a,b); Andrews, Criscuolo and Gal
(2016); Arntz, Gregory and Zierahn (2016); Frey and Osborne (2017); Barkai (2020); Autor et al.
(2020); Jones and Kim (2018); Hemous and Olsen (2018); Benzell and Brynjolfsson (2019).

5Including among others Yudkowsky (2013); Graetz and Michaels (2018); Sachs, Benzell and
LaGarda (2015); Benzell et al. (2015); DeCanio (2016); Acemoglu and Restrepo (2018); Aghion,
Jones and Jones (2019); Berg, Buffie and Zanna (2018); Korinek and Stiglitz (2019); Trammell and
Korinek (2021); Davidson (2021); Sevilla et al. (2022); Eloundou et al. (2023); Besiroglu, Emery-Xu
and Thompson (2022); Erdil and Besiroglu (2023); Korinek and Suh (2024).

6Including among others Romer (1990); Jones and Manuelli (1990); Aghion and Howitt (1992);
Jones (1995); Acemoglu (2003); Ha and Howitt (2007); Madsen (2008); Bloom et al. (2020); Kruse-
Andersen (2023).
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2 Motivation

2.1 New Trends of the Digital Era

Since the 1980s pre-existing long-run trends in economic development like Kaldor’s
“stylized facts” (Kaldor, 1961) and the seemingly eternal constancy of “great ra-
tios” (Klein and Kosobud, 1961) have been overturned, and new ones emerged
(Jones and Romer, 2010). Among the new tendencies, during the last 40 years
we have been witnessing declining labor shares (Arpaia, Pérez and Pichelmann,
2009; Elsby, Hobijn and Sahin, 2013; Karabarbounis and Neiman, 2014), increas-
ing profit shares (Barkai, 2020), increasing markups and market power (De Loecker,
Eeckhout and Unger, 2020; De Loecker and Eeckhout, 2018; Diez, Leigh and Tam-
bunlertchai, 2018), increasing market concentration (Autor et al., 2020) and in-
creasing within-country income inequality (Piketty, 2014; Piketty and Zucman,
2014; Milanović, 2016). All this was accompanied by a tendency of skill polar-
ization, gradual elimination of routine jobs (Acemoglu and Autor, 2011; Autor
and Dorn, 2013), an increasing variety of jobs becoming susceptible to automa-
tion (Frey and Osborne, 2017; Arntz, Gregory and Zierahn, 2016; Eloundou et al.,
2023), and a slowdown in total factor productivity growth (Jones, 2002; Gordon,
2016).

These emerging new tendencies can be understood as implications of the Dig-
ital Revolution which is transforming the world before our eyes in a comparably
profound way to what the Industrial Revolution was doing two centuries ago.
The computer age – differently from what Robert Solow observed back in 1987
– is now seen everywhere, even in the productivity statistics. Since the 1980s
personal computers have been permeating firms and households, and digitiza-
tion gained momentum in the 2000s with the spread of the Internet, and later
– smartphones and AI. Quantitatively, since the 1980s “general-purpose com-
puting capacity grew at an annual rate of 58%. The world’s capacity for bidi-
rectional telecommunication grew at 28% per year, closely followed by the in-
crease in globally stored information (23%)” (Hilbert and López, 2011, p. 60). The
costs of a standard computation have been declining by 53% per year on average
from 1940 to 2014 (Nordhaus, 2021). Hence, growth in the digital sphere is now
an order of magnitude faster than growth in the global capital stock and GDP:
data volume, processing power and bandwidth double every 2–3 years, whereas
global GDP doubles every 20–30 years (Growiec, 2022a). The processing, stor-
age, and communication of information has decoupled from the cognitive capac-
ities of the human brain; “less than one percent of information was in digital
format in the mid-1980s, growing to more than 99% today” (Gillings, Hilbert and
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Kemp, 2016, p. 183). New evidence also suggests that since the 1980s the effi-
ciency of computer algorithms has been improving at a pace that is of the same
order of magnitude as accumulation of digital hardware (Grace, 2013; Hernan-
dez and Brown, 2020). Corroborating this finding, in the recent decade we have
witnessed a surge in AI breakthroughs based on the methodology of deep neural
networks (Tegmark, 2017): high-quality language interpretation, understanding,
rephrasing, summarizing and producing human-like text (OpenAI’s GPT-4, Ope-
nAI, 2023, Anthropic’s Claude, Google Gemini), generative visual art (SORA,
DALL-E 3, Stable Diffusion), increasingly autonomous vehicles, self-taught su-
perhuman performance at chess and Go (AlphaZero, Silver et al., 2018), or accu-
rate prediction of protein structures (AlphaFold, Jumper et al., 2021). In recent
years algorithmic progress in areas of AI such as language models, computer
vision, and simulated gameplay, has been almost matching the growth in asso-
ciated compute. Since 2012 language models “require 2x less compute roughly
every eight months” (Ho et al., 2024, p. 5), whereas the compute used to train
these models doubles roughly every six months (Sevilla et al., 2022). We are also
observing that ever since Bill Gates first topped the list of World’s Billionaires in
1995, many of the biggest fortunes are made in the computer software business.

Reconciling the implications of the Digital Revolution with established his-
torical evidence in a single unified framework remains a challenge for growth
theory: (i) conventional (textbook) economic growth models are rooted entirely
in the industrial era (e.g. Barro and Sala-i-Martin, 2003; Jones, 2005a; Acemoglu,
2009); (ii) unified growth theories (e.g., Galor and Weil, 2000; Galor, 2005, 2011) are
capable of successfully dissecting the mechanisms of transition from a relatively
stagnant agricultural to a fast growing industrial economy during the Industrial
Revolution, but not the transition from an industrial to a digital economy; (iii)
models of economic growth with automation and AI (e.g., Acemoglu and Re-
strepo, 2018; Benzell et al., 2015; Berg, Buffie and Zanna, 2018; Aghion, Jones and
Jones, 2019; Korinek and Stiglitz, 2019; Korinek and Suh, 2024) address the latter
transition but not the former.

2.2 Mechanization, Automation and AI

The hardware–software framework involves a sharp conceptual distinction be-
tween mechanization and automation:

• Mechanization of production consists in replacing human physical labor with
machines within hardware. Large-scale mechanization is observed since the
Industrial Revolution (≈1800 CE onwards). Mechanization applies to phys-
ical actions but not the instructions defining them.
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• Automation of production consists in replacing human cognitive work with
digital software within software. But for early forerunners, automation is
observed since the Digital Revolution (≈1980 CE onwards) when informa-
tion technologies first came into use as general purpose technologies (Bres-
nahan and Trajtenberg, 1995). Automation pertains to cases where a task,
previously involving human thought and decisions, is autonomously car-
ried out by machines without any human intervention.

The distinction between mechanization and automation is instrumental in ad-
dressing questions like “will humans go the way of horses?” (Brynjolfsson and
McAfee, 2014), which is supposed to mean whether human work will be even-
tually fully replaced by machines. The answer is: as far as physical labor is con-
cerned, we have long gone the way of horses; for cognitive tasks (for which horses
are of no use) this has not been the case yet, but it may happen in the future in
the scenario of full (AI-driven) automation of production. By the same token, it
is false comfort to say that the history of the Industrial Revolution teaches us that
when jobs are destroyed, new ones are bound to emerge: that period only tells
us that when human physical labor is mechanized, additional workers will be
demanded in cognitive occupations, but it tells us nothing about cognitive occu-
pations being automated.

The hardware–software framework also helps disentangle the concepts of au-
tomation and artificial intelligence (AI). AI algorithms are a special type of software
that has the ability to improve its performance based on experience and data. This
happens even under a static architecture of AI algorithms, though it is conceiv-
able that in the future AI may also modify its own architecture while heading to-
wards self-improvement. In principle automation does not need AI, and indeed
has historically begun prior to AI. However AI can strongly accelerate automa-
tion by substituting human cognitive work in non-routine tasks (Brynjolfsson,
Rock and Syverson, 2019; Eloundou et al., 2023). According to Agrawal, Gans
and Goldfarb (2017), while computers drastically lowered the costs of computing
(arithmetic), AI drastically lowers the costs of prediction.

All in all, AI algorithms provide drastic improvements in the applicability,
efficiency, and versatility of software, but do not constitute a qualitative change
in its function as means of providing instructions to programmable hardware.
Hence, the framework does not envisage a separate “AI revolution”, and rather
sees AI development as a massive boost to the Digital Revolution which already
began with the early computer hardware and software. In our view, AI is to the
digital era what the development of electricity and internal combustion engines
was to the industrial era: a second wave of key breakthroughs, forcefully acceler-
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ating the impact of the initial revolutionary technological ideas on the economy
and society, but not a separate technological revolution (Gordon, 2016).

3 The Hardware–Software Framework

We postulate that output is generated through (i) purposefully initiated (ii) phys-
ical action. Based on this premise we posit that at the highest level of aggregation
any production function should feature hardware X , performing the physical ac-
tion using energy, and software S, providing the instructions using information.
This leads to a general form of a production function:

Output = F(X,S), (1)

where F : R2
+ → R+ is increasing and concave in both factors and such that hard-

ware X and software S are essential (i.e., F(0, S) = F(X, 0) = 0) and mutually
complementary. The degree of their complementarity is an open question; the
plausible range spans from perfect complementarity (Leontief form) if just one
method of producing output exists, to imperfect complementarity if producers
are allowed to choose their preferred technology from a technology menu (Jones,
2005b; Growiec, 2013, 2018). Intuitively, a little substitutability is likely because
the same outcome can sometimes be generated with more resources (larger X)
but less efficient code (smaller S), or vice versa, but the fundamental complemen-
tarity should nevertheless prevail. One natural way to instantiate this assump-
tion is to take a CES specification with an elasticity of substitution σ ∈ (0, 1), cf.
Klump, McAdam and Willman (2007, 2012). The particular CES form of the F
function is however not necessary for the results.7

The specification (1) abstracts from raw materials, energy resources and data
sets which are being used up in the production process. It works as if we assumed
that they were given for free and in infinite supply, or at least that they were suf-
ficiently cheap and abundant that they would never become a bottleneck (think,
e.g., of the supply of solar energy). Relaxing this simplifying assumption is left
for further research.

3.1 Factors of Production

HardwareX includes physical actions performed by both humans and machines.
Hence, it encompasses both human physical labor L and the services of physi-
cal capital K, where the former variable excludes any know-how or skill of the

7For example, Growiec and Mućk (2020) propose a more flexible parametric framework that
also allows the modeler to control whether the factors are gross substitutes or gross complements.
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worker, and the latter excludes any code that could be stored and executed on the
machine.

Software S, in turn, encompasses all useful instructions which stem from the
available information, in particular the practical implementation of state-of-the-
art technologies. Hence, it includes the skills and technological knowledge em-
ployed in human cognitive work, H , as well as digital software Ψ providing in-
structions to be performed by the associated compute.8 Services of digital soft-
ware Ψ may be provided by static programs such as operating systems, spread-
sheets or word processors, but also AI algorithms, distinguished by their abil-
ity learn from data as well as potentially self-improve and self-replicate. It is
assumed that there are no physical obstacles precluding digital software from
performing any cognitive task available to a human (Yudkowsky, 2013; Dennett,
2017).

Within hardware, agents of physical action are substitutable. The extreme
case of perfect substitutability reflects the idea that whatever it is that performs a
given task, if the set of actions is the same then the outcome should be the same,
too. The same logic applies to software: regardless of whether a set of instructions
comes from a human brain or a digital information processing unit, if the actual
information content of instructions is the same, then the outcome should be the
same, too. Therefore, at the level of sufficiently disaggregated tasks, all forms of
software should also be considered perfectly substitutable.

However, this intuitive property will not always smoothly aggregate to the
macro level. To see this, it helps to view the specification (1) as a reduced form
of a richer framework where hardware and software are used in performing het-
erogeneous tasks, and the overall supply of hardware and software is computed
by aggregating over these tasks (Acemoglu and Restrepo, 2018, 2019a,b; Growiec,
2022b). In such a scenario imperfect substitutability between human and ma-
chine contributions to factors of production may ensue from heterogeneity and
mutual complementarity of the tasks. A particularly important caveat in this
regard is that the baseline hardware–software framework excludes essential non-
automatable cognitive tasks and sub-tasks – which cannot be circumvented and
for which human cognitive work is necessary. For example, if a cognitive task
consists of two consecutive steps, the first of which can be performed by a com-
puter algorithm but the latter only by a human, then digital software and human
cognitive work will turn out complementary at the level of the whole task even if

8Compute, i.e., programmable hardware, consists typically of computers, robots, and other
devices embodying digital chips. In principle, it does not have to be silicon-based. In fact the first
pieces of non-biological programmable hardware were mechanical devices such as the Jacquard
loom using punchcards, first invented in 1804.
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they are perfectly substitutable within the two sub-tasks. This apparent comple-
mentarity disappears, however, once the task becomes fully automatable.9

In line with this discussion, we write the general form of a production function
as:10

Output = F(X,S) = F(L+K,H +Ψ). (2)

Each of the four factors of production L,K,H,Ψ has unique properties (Table 1).

• Human physical labor L is rivalrous and given in fixed supply per worker,
L = ζN where ζ ∈ [0, ζ̄] denotes the supply of physical labor per worker in
a unit of time, expressed in physical capital units, and N is the total number
of workers.

• Physical capital K is rivalrous but can be unboundedly accumulated per
capita. Physical capital K consists of non-programmable machines and
compute. The share of compute in total physical capital is denoted by χ

(so that χ ∈ [0, 1]).

• Human cognitive work H consists of three components: technological knowl-
edge A, the average skill level h, and the number of workers N , as in H =

AhN . Technological knowledge A, or the size of the “repository of codes” is
non-rivalrous (Romer, 1986, 1990) and accumulable.11 Per-capita skill levels
h are rivalrous and bounded above, theoretically by the optimal code for
performing a given task, but in practice by a much lower number h̄ > 0

due to the human inability to rewire our brains in order to perform cogni-
tive tasks more efficiently (Yudkowsky, 2013) as well as more down-to-earth
reasons like human mortality and decreasing returns to education.

9Note that in the established task-based automation literature (Zeira, 1998; Acemoglu and Au-
tor, 2011; Acemoglu and Restrepo, 2018; Aghion, Jones and Jones, 2019) the default situation is
that tasks can be only partially automated, whereas in the hardware–software framework in prin-
ciple tasks can be automated fully. Growiec (2022b) demonstrates that a shift from partial to full
automatability of complex tasks is disruptive for the economy – the contribution of human cog-
nitive work switches from essential and scarce to inessential and replaceable – and argues that in
the future we may see more and more tasks fully automated with the advancement of AI.

10At the cost of less transparent notation, one can generalize equation (2) to accomodate im-
perfect substitutability between people and machines in both hardware and software (Growiec,
2023b): Output = F(G1(L,K), G2(H,Ψ)), with gross substitutability of factors within G1 and G2.
A particularly tractable case to consider is the one where F , G1 and G2 are CES. Furthermore,
the partial automatability scenario – where some essential tasks will never be automated – can
be accomodated by assuming gross complementarity between human and machine inputs in G2

(Growiec, 2022b). This is the specification we use in the empirical Section 4 of our study, covering
a historical period during which the potential for automation was limited.

11Depending on the institutional setup (e.g., intellectual property rights), technological knowl-
edge A may be characterized by varying levels of excludability.
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• Digital software Ψ also consists of three components: technological knowl-
edge A, algorithmic skill level ψ which captures the degree to which digital
software is able to perform the tasks collected inA, and the stock of compute
χK on which the software is run, as in Ψ = AψχK. Technological knowl-
edge A is the same as above.12 The algorithmic skill level ψ is assumed to be
bounded above by the optimal code for performing a given task (i.e., per-
fect accuracy), though there may be in fact a much lower upper bound ψ̄

(Hanson and Yudkowsky, 2013).13 Because software can be virtually cost-
lessly copied, it is assumed that it can scale up to the level of all available
compute χK.14

Table 1: Factors of Production and R&D

Hardware X
Human physical labor L = ζN

Non-programmable physical capital (1− χ)K

Compute χK

Software S
Human cognitive work H = AhN

Digital software† Ψ = AψχK

Note: † includes AI algorithms.

3.2 Technological Progress

Following Romer (1986, 1990), the hardware–software framework envisages tech-
nological progress (growth inA) as an expansion of the “repository of codes”, i.e.,
as the development of new, better instructions allowing to produce higher output
with a given amount of hardware. Whether these new instructions take the form
of new abstract ideas, scientific theories, systematically catalogued facts, codes
specifying certain actions, or blueprints of physical items, they are all information
and not actual objects or actions, and it is precisely this informational character
that makes technologies non-rivalrous and a source of increasing returns to scale
(Romer, 1990). What is novel here in comparison to Paul Romer’s seminal contri-
butions, though, is that these instructions can be applied to the tasks at hand by

12If in reality the sets of codes available to humans and digital software are different, the dis-
crepancy between the measures of both sets can be captured by the ratio ψ/h.

13Depending on the institutional setup (e.g., proprietary code vs. open source), the algorithmic
skill level ψ may be characterized by varying levels of excludability.

14Which implies that, in its basic form, the framework abstracts from economic and legal con-
straints on the diffusion of digital software, such as the protection of intellectual property rights.
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both humans and machines.15

The informational character and non-rivalry of technological ideas naturally
classify them in the domain of software, or “brains”.16 Consequently, all techno-
logical progress is modeled as software-augmenting.

The principle behind this sharp postulate is that the purpose of hardware is
to perform physical action and work in the physical (mechanical) sense cannot
be better or worse, there can only be more or less of it. Thus, construction of a
machine able to, for example, transport a bigger load in the same amount of time
and using the same amount of fuel, or to perform more digital computations
per second using the same amount of energy, translates into accumulation, not
augmentation of capitalK. In turn, better targeted physical action achieved thanks
to, say, a more precise tool or a better organized production stream indicates not
an improvement in hardware, but software – instructions initiating the physical
actions.

To explain this point further, let us link back to the literature on the capi-
tal embodiment controversy (Solow, 1960; Greenwood, Hercowitz and Krusell,
1997; Hercowitz, 1998). In line with the majority of modern papers on capital
accumulation, the hardware–software framework views capital as “putty–putty”
rather than “putty–clay”. After installation, new machines simply enter the stock
of capital K and we no longer trace their vintage and history. Even though sys-
tematic improvements in the energy efficiency of material processes are observed
over time – new generations of machines are typically more capable and/or less
energy consuming, and particularly strong compounding improvements are ob-
served in the case of compute – because all these new machines are rivalrous
devices which require to be built first, quality improvements embodied in them

15In the growth literature, the technology level A is frequently interpreted as mass of product
designs (in increasing variety models) or an aggregate quality index of produced goods (in quality
ladder models), Barro and Sala-i-Martin (2003). Note also the difference between technological
ideas and data: “Ideas and data are types of information. Following Romer (1990), an idea is a
piece of information that is a set of instructions for making an economic good, which may include
other ideas. Data denotes the remaining forms of information. It includes things like driving data,
medical records, and location data that are not themselves instructions for making a good but
that may still be useful in the production process, including in producing new ideas.” (Jones and
Tonetti, 2020, p. 2821) In contrast to Jones and Tonetti (2020) and Farboodi and Veldkamp (2019)
the hardware–software framework does not include data as a factor in the production function.
Instead, data, like energy, is tentatively assumed to be sufficiently cheap and abundant that it will
never become a bottleneck in production.

16Moreover, the technology level A can also be considered to include a reduced form for a
variety of mechanisms and institutions underlying the equilibrium allocation in a more general
model. For example, markets, legal systems and culture also implement some algorithms for
aggregating and processing information, and those algorithms can vary in efficiency.
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are included in the volume (dollar value) of capital accumulation and do not con-
stitute hardware-augmenting technical change.

The postulate of purely software-augmenting technical change is particularly
important over the long run perspective because it rules out unbounded growth
in energy efficiency of material processes, which in reality is physically impossi-
ble because it would contradict the laws of thermodynamics (see e.g. Beaudreau
and Lightfoot, 2015). Specifically, the Landauer’s principle provides a theoretical
lower bound for energy consumption of computation (Erdil and Besiroglu, 2023).
Bounded improvements in energy efficiency are possible, though. For example, a
sizeable share of incremental productivity improvements achieved over the two
centuries of the industrial era could be attributed to the increasing speed of phys-
ical actions, such as the speed of travel or velocity of moving parts in industrial
machines. Simultaneous energy-saving innovation allowed us to achieve those
gains with less-than-proportional increases in energy consumption. While these
economies of speed have been already largely exhausted (Beaudreau, 2020), now
we are observing a different type of acceleration, namely in the speed and en-
ergy efficiency of digital computation. Computing efficiency (the energy use of
computers) has been halving every 1.5 years over the last 60 years (Roser, Ritchie
and Mathieu, 2023). Looking into the future, there is room for more progress in
this regard, but eventually – following at least the Landauer’s principle – these
new “economies of speed” must be limited as well. In fact, physical constraints
may become practically binding much earlier; they have already slowed down
the progress in miniaturization of digital chips (Waldrop, 2016).

This is important for macroeconomic dynamics because (physically impossi-
ble) unbounded hardware-augmenting technical change would have the poten-
tial to resolve the scarcity of compute in production over the long run limit, cre-
ating a self-reinforcing feedback loop that leads to explosive, super-exponential
growth (Growiec, 2023b). Such explosive dynamic is obtained, for example, when
unbounded technological progress is introduced into the AK model or its gener-
alizations (Erdil and Besiroglu, 2023).

In contrast, there are no analogous bounds on the number of potentially useful
ideas, technologies, algorithms or blueprints. Even though there are known limits
on the asymptotic complexity of certain algorithm families, such that, e.g., the
number of operations must grow at least as fast as some function of the input
size, these limits do not constrain the space of ideas as a whole and – by extension
– the scope for software-augmenting technical change.
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3.3 The Aggregate Production Function

Since Solow (1956, 1957) it has become commonplace to take capital K and labor
L as the key inputs of the aggregate production function. Furthermore, it has be-
come a very frequent, if not default, practice to assume purely labor-augmenting
(Harrod-neutral) technical change, as in Y = F (K,AL). Of course, like any other
aggregate production function specification, this is a simplification that disre-
gards the fact thatK and L are amalgamates of heterogeneous components (Tem-
ple, 2006). The key question is, though, whether this simplified form is sufficient
for capturing the key macroeconomic facts. Evidence is mounting that it is no
longer the case. From the literature17 it is becoming clear that the capital–labor
framework, while sufficient to model the classic Kaldor (1961) facts, fails at cap-
turing the new phenomena specific to the digital era, present in macro data since
the 1980s.

In contrast, the hardware–software production function (2) specifies the pro-
duction factors in accordance with the physical divide between energy and infor-
mation, “brawn” and “brains”. Using the concepts introduced above, the aggre-
gate production function F is formalized as:

Y = F (X,S) = F (ζN +K,A(hN + ψχK)), (3)

where Y is aggregate value added (or GDP). The function F is increasing and
concave in both its arguments, and hardware X and software S are essential and
complementary. The standard replication argument applied to this production
function specification implies constant returns to scale with respect to the rival-
rous factors X and S/A = hN + ψχK. With respect to X , S/A and A, though,
returns to scale are increasing (Romer, 1986, 1990).

From the laws of thermodynamics, implying in particular that performing
physical action requires expediting energy, it is expected that an essential fraction
of GDP must consist of material outputs, serving – at the very least – to sustain
the hardware (including human bodies) and allow it to work (Georgescu-Roegen,
1971, 1975). This observation reinforces the assumption that hardware X must be
essential in the production process.

Digital software can be deployed in production processes only if the technol-
ogy allows for the existence of compute (χ > 0). Once it is introduced, though,
there is no upper bound for its capacity relative to the cognitive capacity of the
human brain. It may even one day come to exhibit superhuman cognitive per-

17Such as Gordon (1990); Greenwood, Hercowitz and Krusell (1997); Krusell et al. (2000); Caselli
and Coleman (2006); Klump, McAdam and Willman (2007); Jones and Romer (2010); McAdam
and Willman (2018).
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formance.18 This is because (i) the human brain has fixed computational capacity
whereas digital software (including AI) can use arbitrarily large amounts of com-
pute, (ii) AI algorithms have the ability to learn from data and potentially self-
improve their architecture. Nevertheless, even without superhuman AI perfor-
mance all cognitive tasks are amenable to automation with sufficient computing
power χK. The only pre-condition for this outcome is that in the full model the
possibility of accumulating the requisite computing power is not precluded by,
e.g., preferences or institutions.19

It is instructive to consider four special cases of the framework, representing
four distinct conventional models.

Industrial economy producing with capital and labor. Under the assumption that
all physical work is done by machines (ζ = 0) and all cognitive work is done
by humans (χ = 0), the production function (3) reduces to the conventional
capital–labor specification with purely labor-augmenting technical change, Y =

F (K,AhN). Capital and labor are then naturally gross complements, as sug-
gested by bulk of the recent empirical literature (Klump, McAdam and Willman,
2007, 2012; Mućk, 2017).

Capital–skill complementarity and skill-biased technical change. Under the assump-
tion that all cognitive work is done by humans (χ = 0), the production func-
tion (3) reduces to the specification with capital-skill complementarity (Krusell
et al., 2000; Caselli and Coleman, 2006; McAdam and Willman, 2018) and skill-
biased (or more precisely, cognitive labor-augmenting) technical change, Y =

F (ζN + K,AhN). Gross complementarity between hardware and software im-
plies that physical capital is complementary to cognitive (≈ skilled) labor H but
substitutable with physical (≈ unskilled) labor L, in line with findings of this
literature.

Industrial Revolution. The hardware–software framework represents the Indus-
trial Revolution as an episode where physical capital begins to be accumulated
after the initial restriction K ≈ 0 is lifted.20 As a result, human physical labor is

18See Chollet (2019) for an excellent review of definitions of intelligence (cognitive performance,
cognitive capabilities, etc.) of non-human agents.

19However, in a more general model with complex, multi-step tasks, human cognitive work
can become essential for generating output if at least one step of at least one essential task is not
automatable (Growiec, 2022b). Essentiality implies that there is no way around this particular
step and no possibility of substituting out the entire task.

20The initial restriction K ≈ 0 can be understood as the absence of machines with their own en-
ergy source (e.g., engine), able to perform physical action without energy inputs from the human.
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gradually replaced by machines within hardware in a process of mechanization of
production.

Digital Revolution. The framework represents the Digital Revolution as an episode
where digital software begins to be accumulated after the initial restriction χ = 0

(and thus Ψ = 0) is lifted. As a result, human cognitive work is gradually replaced
with machine code within software in a process of automation of production.

3.4 Production Function for Ideas

Consistently with the hardware–software framework, research and development
(R&D) processes are also viewed as a function of hardware X and software S.
Hardware includes R&D capital alongside human physical labor (Growiec, 2022c;
Growiec, McAdam and Mućk, 2023). Software encompasses all the ideas sup-
plied by scientists and technical personnel, as well as code encapsulated in digital
software. Formally the idea production function obeys the general equation (2),
specializing into:

Ȧ = Φ(X,S) = Φ(ζN +K,Aϕ(hN + ψχK)), (4)

where Ȧ represents the flow of new technological ideas. It is assumed that the
idea production function Φ is increasing and concave in both factors, X and S.

Following the discussions in voluminous past literature (Jones, 1999; Ha and
Howitt, 2007; Madsen, 2008; Bloom et al., 2020; Kruse-Andersen, 2023), we in-
clude software-augmenting knowledge spillovers in the production function for
ideas, as represented by the parameter ϕ. The empirical magnitude of this pa-
rameter is subject to ongoing dispute. In theory, four distinct cases can be consid-
ered. First, if ϕ = 1, then the stock of technological knowledge is included in the
software term exactly like in the production function (3), so that no knowledge
spillovers are present. With ϕ > 1 there are positive knowledge spillovers, and
with ϕ < 1 – negative knowledge spillovers. Specifically, if ϕ < 0 then the nega-
tive knowledge spillovers are so strong that they imply the emergence of “fishing
out effects”, due to which, ceteris paribus, R&D output declines with technological
knowledge A (Growiec, 2023a).

3.5 Stages of Economic Development

Let us now trace how the hardware–software framework squares with the key
properties of production processes across the human history (Growiec, 2022a). In
this regard, it must be noted that the framework itself does not explain the causes
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of technological revolutions that push the economy to the next stage of devel-
opment, other than speculating that in certain circumstances, given the relative
supply of aggregate hardware vs. software, such a shift would be particularly
demanded. However, the framework does predict the secular trends emerging
after each technological revolution has exogenously occurred.

At this stage it is helpful to invoke the following asymptotic result:

F (1,∞) = lim
y→∞

F (1, y) = aX ∈ (0,+∞). (5)

Following from the assumptions of (i) constant returns to scale, and (ii) gross
complementarity between hardware X and software S, the limit in (5) exists and
is finite. One cannot achieve unbounded output growth unless both hardware
and software grow unboundedly as well.

Stage 1. Pre-industrial production. In a pre-industrial economy, output was pro-
duced primarily in farming. People could only access the energy transformed
in natural processes, such as photosynthesis and human metabolism. Without
machines powered by external energy sources, there was no significant accumu-
lation of productive capitalK. Output was produced with a technology that used
only human physical labor for performing the physical actions and required also
the services of land, a vital but essentially fixed21 factor of agricultural produc-
tion. There was also no digital software Ψ. Setting a constant K = K̃, represent-
ing land, and χ = 0 in equation (3) yields the following simple formula:

Y = F (X,S) = F (ζN + K̃, AhN) ≈ N · F (ζ, Ah), (6)

where the last approximation follows from the assumption that K̃ is fixed and
small relative to ζN . Hence, due to gross complementarity of hardware and soft-
ware, pre-industrial output per worker was bounded above (Y/N ≤ ζaX). The
key growth bottleneck was the insurmountable scarcity of hardware (land and
human physical labor), impossible to get around even in the hypothetical case
A→ ∞.

Stage 2. Industrial production. Following the Industrial Revolution (≈1800 CE
onwards) human physical labor was gradually replaced with steam-, oil-, and
electricity-powered machines in production. The stock of physical capital per
worker K/N began to grow exponentially. Productive physical actions were,

21By making this assumption we concentrate on a mature agricultural economy and exclude
the periods of transition from hunting and gathering to sedentary agriculture or conquests of
new agricultural land.

18



however, still dependent solely on the instructions produced through human cog-
nitive work; there was no compute and no digital software yet. As hardware was
accumulated faster than software, the latter eventually became relatively scarce,
at which point demand for human cognitive skills began to grow, setting up a
secular upward trend in wages (Galor, 2005). Setting χ = 0 in (3) yields:

Y = F (X,S) = F (ζN +K,AhN). (7)

The hypothetical limit of full mechanization and skill satiation, but with no au-
tomation, K → ∞ and h → h̄, where h̄ is the upper limit of human capital
(skill) accumulation, implies Y = F (K,Ah̄N). Hence for a mature industrial
economy we obtain the standard balanced growth path result (Uzawa, 1961; Ace-
moglu, 2003). Under gross complementarity of capital and labor (really: hard-
ware and software) and “labor-augmenting” (really: software-augmenting) tech-
nical change, the industrial economy tends to a balanced growth path where cap-
ital per worker K/N and output per worker Y/N grow at the same rate as tech-
nological knowledge A. Technological progress augmenting human cognitive
work, generated through R&D, is the unique source of long-run growth (Romer,
1990). However, in contrast to the pre-industrial period, exponential growth is
now sustained by the proportional expansion in complementary physical capital.

Stage 3. Digital production. Following the Digital Revolution (≈1980 CE onwards)
we are observing gradual automation of production (χ > 0). Human cognitive
work which scales with the working population N is gradually replaced with
digital software which scales with compute χK that grows faster. Consequently,
software-augmenting technical change no longer affects only the efficiency of hu-
man cognitive work, but also to an increasing degree the capacities of digital
software. As automation progresses, skill-biased technical change morphs into
routine-biased technical change (Acemoglu and Autor, 2011; Autor and Dorn,
2013). This is the world in which we live now.

At a later stage of the digital era, however, digital software will likely consist
largely of advanced general-purpose AI algorithms, allowing for multiple-fold
increases in the algorithmic skill level ψ (Agrawal, Gans and Goldfarb, 2017; Berg,
Buffie and Zanna, 2018) and thus fortifying the emerging upward trend in the
contribution of the non-human component to software.

The limit of K → ∞ and ψ → ψ̄, χ→ χ̄ implies

Y = F (ζN +K,A(hN + ψχK)) ≈ K · F (1, Aψ̄χ̄), (8)

where ψ̄ is the upper limit of algorithmic skill accumulation and χ̄ ∈ (0, 1] is the
limiting share of compute in all physical capital as K → ∞. Full automation of
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production in the limit implies that the human contribution to output will grad-
ually fall to zero.22

Equation (8) delivers an AK-type implication: in contrast to the industrial
economy, long-run growth of the digital economy is driven not by technologi-
cal progress but by the accumulation of hardware (specifically, compute) (Jones
and Manuelli, 1990; Barro and Sala-i-Martin, 2003). If A → ∞ then Y/K → aX .
This striking result is driven by two forces: (i) that digital software expands pro-
portionally with compute, and (ii) that hardware and software are gross com-
plements, and thus in the long run the pace of accumulation of hardware – the
scarce factor – determines the pace of economic growth. The constancy of the
output growth rate over the long run follows in turn from the assumption of con-
stant returns to scale in production, making F asymptotically linear in K (Jones,
2005a; Growiec, 2007).

Although asymptotically constant, the pace of hardware accumulation and
output growth may be nevertheless stupefying, potentially with doubling times
of the order of 2–3 years, which are currently observed for digital processing
power, data volume and bandwidth (Hanson, 2001; Hilbert and López, 2011).23

Hypothetical stage 4. Post-digital production. Under high to full automation of pro-
duction, compute χK will gradually become the bottleneck of economic growth,
the key factor constraining its pace. This will increase the incentives to invest in
R&D directed towards radical innovations holding the promise to eliminate this
bottleneck. Such breakthrough technology would have to tap an entirely new
source of energy, fundamentally increase energy efficiency, or otherwise mas-
sively improve unit productivity of compute.24

Formally, such an episode of “new mechanization” (or “new compute”) may
be modelled by introducing an additional component to the hardware amalga-
mate, as in:

X = ζN +K + ωM, (9)

where M denotes the new form of hardware, and ω ≫ 1 captures its unit pro-

22Full automation does not necessarily mean that human work will one day become useless
for the economy (Harari, 2017). The decline in human productivity relative to machines will
surely be reflected in sub-par growth in wages, but the extent of technological unemployment
will eventually depend also on the elasticity of labor supply. See also Korinek and Juelfs (2022).

23Long-run growth in the alternative scenario where some essential tasks will never be auto-
mated is investigated in Growiec (2023a,b).

24Among the probable scenarios, one could envision the arrival of quantum computing (in
which case the Google AI Quantum team has already achieved a major breakthrough, Arute
et al., 2019), disruptive nanotechnology, massively improved solar power cells, fusion power, or
perhaps something yet unimagined.
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ductivity relative to K. This form of hardware must be programmable, so that AI
could scale with M and avoid becoming a growth bottleneck itself.

Long-run implications include gradual replacement of K with M and a per-
manent acceleration in growth. Indeed, this additional acceleration in hardware
X accumulation may eventually lead to a new growth regime “with a doubling
time measured in days, not years” (Hanson, 2000, p. 1): technological singularity.

3.6 Factor Shares

The assumption of gross complementarity of hardware and software provides a
clear-cut implication for factor shares: factor income will be disproportionately
directed towards the scarce factor. The hardware–software framework delivers
the following (empirically testable and intuitively explicable) predictions.

Stage 1. Pre-industrial production. In a mature pre-industrial economy able to
achieve systematic technological progress (growth in A), increasing scarcity of
human physical labor and agricultural land (ζN+K̃) relative to human cognitive
work (AhN ) implies that an ever-increasing portion of value added is directed to
hardware at the expense of software. The counterfactual limit of A → ∞ with-
out an industrial revolution (with a fixed K = K̃) implies a zero software share
of output as virtually all revenues are directed towards agricultural (physical)
workers and owners of agricultural land.

Stage 2. Industrial production. The first stage of development of an industrial econ-
omy features gradual mechanization of production: physical capital accumulation
systematically reduces the role of human physical labor in hardware. Given the
substitutability between capitalK and physical labor ζN , the physical labor share
goes down whereas the capital share goes up – a trend which was most clearly
seen in the early 19th century and was reflected in Marx’s ideas regarding the
exploitation of the working class.

However, as the pace of capital accumulation in a growing industrial economy
outruns technical change (growth in A), this secular trend is accompanied also by
an increasing output share accruing to software (i.e., human cognitive work) at
the expense of hardware (ζN+K, gradually dominated byK). Hence, during the
second stage of development of an industrial economy, human cognitive work
becomes increasingly scarce and thus increasingly well remunerated, raising the
returns to education and the skill premium, and setting up a secular upward
trend in wages. Such trend was observed in developed countries from the late
19th and throughout the 20th century.25 In the counterfactual limit of A → ∞,

25As Galor and Moav (2006) put it, “The accumulation of physical capital in the early stages
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K → ∞ and h → h̄ without a digital revolution, the industrial economy tends to
a balanced growth path, along which Y = F (K,Ah̄N), the hardware (=capital)
share stabilizes at some intermediate value π̄X ∈ (0, 1), and the economy respects
Kaldor’s facts (Kaldor, 1961).

Stage 3. Digital production. The first stage of development of a digital econ-
omy features gradual automation of production: accumulation of digital software
Ψ gradually reduces the role of human cognitive work H in software. Given the
substitutability of these two factors, the cognitive labor share goes down whereas
the digital software share goes up. (And if data and software rents are not sepa-
rately accounted, also firms’ profit shares and measured markups go up, as docu-
mented e.g. by Barkai (2020); De Loecker and Eeckhout (2018).) This is the world
of today, where booming digital technologies fuel the “rise of the global 1%”.

The hardware-software framework predicts a change in this secular trend
in the future, though. It expects that due to ongoing technological progress in
A, systematic improvements in algorithmic skill ψ and progressing automation,
hardware (and more precisely, compute) will gradually become the bottleneck
of global development, a key factor constraining the pace of further economic
growth.26 Consequently the revenues will be increasingly redirected from soft-
ware towards compute, and the software share πS will set on a secular down-
ward trend. In the hypothetical limit of K → ∞, χ → χ̄, ψ → ψ̄, assuming the
absence of a next technological revolution, the hardware share will tend to unity.
At that point in time, though, only a negligible fraction of total remuneration will
be earned by human workers.

4 Empirical Evidence for the USA, 1968–2019

Mapping the theoretical concepts of L, K, H and Ψ to real-world data is a chal-
lenge. In the data there is no direct split of workers’ time and remuneration be-
tween their physical labor and cognitive work; each worker in some proportion
does both. Similarly, programmable devices also have double duty as means
of performing physical action and as compute which stores and runs its code;
measured capital investment and returns conflate both. It is not even clear in

of industrialization enhanced the importance of human capital in the production process and
generated an incentive for the capitalists to support the provision of public education for the
masses, planting the seeds for the demise of the existing class structure” (p. 85).

26This is a robust prediction which fails only if full automation is not possible (then human
cognitive work remains the growth bottleneck forever) or if there is also hardware-augmenting
technical change (which leads to super-exponential, explosive growth), cf. Growiec (2023b).
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the accounting whether a certain investment expenditure helps accumulate pro-
grammable or non-programmable capital. Finally, if not for intellectual property
rights digital software can be virtually costlessly copied to a multiplicity of de-
vices, making it notoriously difficult to price and evaluate its marginal produc-
tivity.

In this section we provide a first attempt at quantifying hardware and soft-
ware, using U.S. data for the years 1968–2019. We construct the relevant time se-
ries and plug them into a growth accounting exercise. We use (i) O*NET Content
Model data, providing detailed information on work characteristics and equip-
ment used in almost 1000 occupational groups; (ii) microdata from the CPI IPUMS
(Flood et al., 2022) on hours worked by occupation in the U.S. from 1968 to 2019;
and (iii) tables on U.S. investment in fixed assets by category from the U.S. Bu-
reau of Economic Analysis; (iv) aggregate GDP, hours worked and labor share in
the U.S.

4.1 Decomposing Labor: Manual vs. Cognitive Tasks

Our first step is to isolate the hardware and software component within labor (L
and H , respectively). To this end we decompose work tasks in individual profes-
sions into manual and cognitive tasks using the method proposed by Autor, Levy
and Murnane (2003); Acemoglu and Autor (2011). However, while these seminal
papers and the subsequent task-based literature (e.g., Spitz-Oener, 2006; Autor
and Handel, 2013; Autor, Dorn and Hanson, 2015; Lewandowski et al., 2022) fo-
cused on the split between routine and non-routine task categories, we identify
the manual (physical) vs. cognitive content of jobs. We merge raw O*NET (v.25.3)
files on Work Activities, Work Context, Abilities and Skills and identify manual
tasks using a specific list of selected Work Activities and Work Context Impor-
tance scales.27 For each occupation, we measure the share of manual work as
the average importance of manual tasks, while the share of cognitive work is ob-
tained as a residual. In so doing we follow O*NET procedure of standardization
into 0-100 scores (because in raw data, each separate task descriptor in O*NET is
associated with a different scale).

These shares are then matched with occupation-level employment data. The
shares of individual occupations in overall hours worked in the U.S. economy

27Routine manual: 4.C.3.d.3 Pace determined by speed of equipment; 4.A.3.a.3 Controlling
machines and processes; 4.C.2.d.1.i Spend time making repetitive motions. Non-routine man-
ual, physical adaptability: 4.A.3.a.4 Operating vehicles, mechanized devices, or equipment;
4.C.2.d.1.g Spend time using hands to handle, control or feel objects, tools or controls; 1.A.2.a.2
Manual dexterity; 1.A.1.f.1 Spatial orientation.
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Figure 2: Dynamics of the share of manual and cognitive work in the U.S.
(1968=1)

Source: own computations based on O*NET and CPS IPUMS data.

are extracted from the Current Population Survey (CPS) IPUMS database (Flood
et al., 2022), containing microdata from the monthly U.S. labor force survey. The
classification system used in the IPUMS database covers more than 450 occupa-
tions. We include observations of persons who were professionally active, had
a specific occupation and disclosed the number of hours worked. To map the
∼ 1000 occupations in O*NET with ∼ 450 occupations in CPS IPUMS, we use
the crosswalk O*NET-SOC 2019 to 2018 SOC from the O*NET Resource Centre.
Upon aggregation, we obtain the split of labor between manual and cognitive
work in the U.S. in the period 1968–2019 (Figure 2).28

Finally, we obtain our final time series corresponding to physical labor L (that
enters hardware) and cognitive labor H (that enters software) by multiplying the
shares of manual and cognitive work by total hours worked in the U.S. economy
in a given year.

28Our method for splitting total hours worked into manual and cognitive tasks yields conser-
vative estimates, with relatively little growth in the ratio of cognitive to manual work. This may
be partly because, due to data limitations, we identify the manual vs. cognitive content of jobs
at only one point in time, and all the measured temporal variation comes from changes in the
occupational structure of employment.
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Figure 3: Hourly wage in manual and cognitive work (USD, constant prices)

Source: own computations based on O*NET and CPS IPUMS data.

We also construct a time series of average real wages in manual and cognitive
tasks, using CPS IPUMS data on remuneration by occupation as well as the afore-
mentioned O*NET (v.25.3) dataset on Work Activities, Work Context, Abilities
and Skills. The manual (respectively, cognitive) wage is calculated as a weighted
average of hourly wages across occupations, using the total hours worked in per-
forming manual (cognitive) tasks within each occupation as weights (Figure 3).
The measured difference between hourly wages for performing physical labor
and cognitive work is rather low – cognitive work pays about 10% more on aver-
age, with a slow increase in the premium over time – mirroring our conservative
estimates of the split between manual vs. cognitive tasks within jobs.

4.2 Decomposing Capital: Physical Capital vs. Digital Software

The process of breaking down total capital into physical capital K (that enters
hardware) and digital software Ψ is analogous. First, we take U.S. Bureau of
Economic Analysis data which allows us to divide investment into structures, in-
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tellectual property products (IPPs) and 25 categories of equipment.29 We assume
that investment in structures contributes 100% to hardware, while investment
in IPPs contributes 100% to software. The challenge, however, is to determine
to what extent investments in specific types of equipment affect the hardware
and software stock. In an attempt to solve this problem via proxy, we use O*NET
data which provides information on the type of equipment used in the day-to-day
work in various professions. We assume that the more manual the job is, the more
hardware-intensive equipment the worker uses. In contrast, highly cognitive oc-
cupations are assumed to be more likely to use equipment containing mostly dig-
ital software.30 We attribute to each type of equipment its specific proportion of
hardware and software by merging the Tools Used by Occupation dataset from
O*NET and the occupation-level manual-cognitive split discussed above. Using
the O*NET-SOC 2019 codes we merge the Tools Used by Occupation dataset with
BEA dataset on real investment by category.

As a result of these steps, we obtain a time series on real investments in phys-
ical capital (hardware) and digital software. Next, we use the standard perpetual
inventory method to build up the stocks of physical capital (hardware) and digi-
tal software. We apply asset-specific depreciation rates based on Fraumeni (1997).
These rates range from 0.026 per annum (structures) to 0.315 (computers and pe-
ripheral equipment).

For illustrative purposes, we also calculate a weighted average of asset-specific
deflators, using the total hardware and software stock in each asset category as
weights (Figure 4). The result is striking: hardware prices were rapidly grow-
ing throughout the entire time frame 1968–2019, whereas software prices were
roughly constant. This finding is in line with the plentiful past evidence that the
price of equipment relative to structures (which we count as 100% hardware) ex-
hibits a secular downward trend (e.g., Greenwood, Hercowitz and Krusell, 1997;
Gordon, 2016). Specifically, the relative prices of ICT equipment have been falling

29Private fixed assets; Computers and peripheral equipment; Communication equipment;
Medical equipment and instruments; Nonmedical instruments; Photocopy and related equip-
ment; Office and accounting equipment; Fabricated metal products; Engines and turbines; Met-
alworking machinery; Special industry machinery, n.e.c.; General industrial, including materi-
als handling, equipment; Electrical transmission, distribution, and industrial apparatus; Trucks,
buses, and truck trailers; Autos; Aircraft; Ships and boats; Railroad equipment; Furniture and fix-
tures; Agricultural machinery; Construction machinery; Mining and oilfield machinery; Service
industry machinery; Electrical equipment, n.e.c.; Other nonresidential equipment; Residential
equipment.

30This is a tentative assumption that calls for refinement in the future. Anecdotal evidence
suggests that it is not always the case that cognitive tasks are performed with “smart” devices,
and manual work – with simple tools. However, we do not have sufficient data to verify this.
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Figure 4: Unit price of physical capital (hardware) and digital software (USD,
constant prices)

Source: own computations based on O*NET and BEA data.

most precipitously (Timmer and van Ark, 2005), and accordingly in the U.S. BEA
data computers and peripheral equipment are the category that witnessed the most
extreme price declines, not just in relative but also in absolute terms.

4.3 Constructed Time Series

Over the period 1968–2019 there was a clear parallel increase in the share of cog-
nitive work in labor and of digital software in capital (Figure 5). Significant dif-
ferences in software intensity have persisted between capital and labor, though:
digital software accounted for about 48% of total capital in the U.S. in 2019 (in
current prices), up by 5 pp. since 1968; at the same time human cognitive work
(software) constituted about 64% of total labor input, up by 6 pp. since 1968.

At this point we must also posit a functional form for exogenous software-
augmenting technical change A(t) feeding into human cognitive work H and
digital software Ψ. As this is the first attempt to quantify hardware and software,
we opt to keep things as simple as possible. Therefore, we postulate exponential
technological progress at a constant rate g > 0, i.e. A(t) = egt. In the baseline
calibration (see below) we assume g = 1.5% per annum.
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Figure 5: Share of human cognitive work in labor and digital software in capital
(in %)

Source: own computations based on O*NET, CPS IPUMS and BEA data.

With this in hand we find that while the stocks of all four factors of production
(L, K, H , Ψ) have been growing over time, in line with U.S. population growth
and fixed asset formation, their growth rates were rather disparate (Figure 6).
Human physical labor L was growing at 0.8% per annum on average, cognitive
work H and real physical capital K – at 2.8%, and digital software Ψ – at 4.8%
(compared to the average real GDP growth rate of 2.7% per annum31). Clearly,
even without specifying the relative contribution of L vs. K in hardware and
H vs. Ψ in software, we already see that as a whole software has been growing
systematically faster than hardware.

4.4 Calibration of the Aggregate Production Function

We now combine all four factors of production in a modified version of aggregate
production function (3). This aggregate production function will later be also
used in a growth accounting exercise.

We use the nested normalized CES production function specification, with

31As calculated based on BEA data downloaded in June 2022. Revisions to the data may have
occurred since then.
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Figure 6: Dynamics of physical capitalK, digital software Ψ, physical labor L and
cognitive work H (1968=1)

Source: own computations based on O*NET, CPS IPUMS and BEA data.

hardware and software being gross complements:

Y = Y0

(
α

(
X

X0

)θ

+ (1− α)

(
S

S0

)θ
) 1

θ

, θ < 0, α ∈ (0, 1). (10)

In contrast to (3), we now also use normalized CES aggregates for hardware
and software, thereby relaxing the assumption of perfect substitutability between
people and machines within hardware and within software. We do so because in
reality there is a multiplicity of tasks to be performed, both in terms of physi-
cal action and information processing; even if people and machines are perfectly
substitutable in performing each task, the tasks themselves may be complemen-
tary and many tasks certainly have not been fully automatable in the considered
time period (Growiec, 2022b). Hence, we write:

X = X0

(
γ

(
L

L0

)µ

+ (1− γ)

(
K

K0

)µ) 1
µ

, µ ≤ 1, γ ∈ (0, 1), (11)

S = S0

(
β

(
H

H0

)ω

+ (1− β)

(
Ψ

Ψ0

)ω) 1
ω

, ω ≤ 1, β ∈ (0, 1). (12)

In line with usual practices in the normalization literature (Klump, McAdam and
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Willman, 2012), the normalization points with subscript 0 are taken as (geometric)
sample means.

However, as the hardware–software framework is a new theoretical setup,
there is no evidence in the literature on the values of distribution parameters
α, β, γ, and elasticity parameters θ, µ, ω. We set them so as to roughly match the
(i) the average GDP growth rate (2.7% in data), (ii) average labor share (0.61 in
data), and (iii) the cognitive wage premium (in data, an average hour of cogni-
tive work is worth ∼ 10% more than an hour of manual work), while excluding
parametrizations implying implausible variability in the labor share and the cog-
nitive wage premium.

To compare the predictions of the hardware–software framework with obser-
vations on the U.S. labor share and cognitive wage premium, we need to derive
their model-based counterparts. Postulating the normalized CES specification
(10) and assuming that factors are priced at their respective marginal products
(subject to a possible constant markup), we obtain the following factor shares:

πX = α

(
X

X0

Y0
Y

)θ

, πS = (1− α)

(
S

S0

Y0
Y

)θ

, (13)

πL = γ

(
L

L0

X0

X

)µ

, πH = β

(
H

H0

S0

S

)ω

, (14)

where πX is the hardware share of output and πS is the associated software share
(due to constant returns to scale with respect to rivalrous inputs and software-
augmenting technical change in (10), πX + πS = 1); πL is the physical labor share
of hardware, and πH is the cognitive labor share of software.

Using this notation, the labor share and the cognitive wage premium are de-
rived as follows:

πLabor = πXπL + πSπH , (15)

and
wH

wL

=
πSπH
πXπL

L

H
. (16)

The calibrated baseline parameters approximately achieving the aforemen-
tioned objectives are listed in Table 2.

Table 2: Baseline parameterization of the nested CES production function
Output Hardware Software Tech
α θ γ µ β ω g

0.44 -0.2 0.45 1 0.71 -1.74 0.015

In this parameterization, the elasticity of substitution between hardware and
software is σX,S = 1

1−θ
= 0.83 – somewhat above the usual estimate of the elastic-
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ity of substitution between aggregate capital and labor from the literature, σ ≈ 0.6

(Klump, McAdam and Willman, 2012), but in the theoretically postulated domain
of gross complementarity. In turn, physical capital and human physical labor are
perfectly substitutable, whereas human cognitive work and digital software are
gross complements, with an elasticity of substitution of σH,Ψ = 1

1−ω
= 0.36. These

parameter choices imply that at the point of normalization, cognitive work earns
about 17% more than manual work, whereas the labor share is 0.60.

Figure 7: The stocks of hardware and software (1968=1, left axis) and the extent of
mechanization and automation (1968=1, right axis) under the baseline calibration

Source: own computations based on O*NET, CPS IPUMS and BEA data.

Our main results (Figure 7) suggest that growth in software (3.5% per annum)
systematically outruns that of hardware (1.8% per annum). We also find that the
extents of both mechanization (share of machines in hardware) and automation
(share of machines in software) are upward trending – roughly in parallel until
the early 2000s, but with a clear acceleration in automation afterwards. In total,
over the considered time frame mechanization progressed by about 60% (or 0.9%
per annum), and automation – by about 88% (1.3% per annum).
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4.5 Growth Accounting

Log-differentiating equation (10) with respect to time, we obtain the following
Solow-type decomposition of economic growth:

gY = πXgX + πSgS, (17)

where πX = ∂Y
∂X

X
Y

is the hardware share of output, and analogously πS = ∂Y
∂S

S
Y

is
the software share. Decomposing (10) further, we obtain:

gY = πXπLgL + πXπKgK + πSπHgH + πSπΨgΨ, (18)

where πL = 1 − πK = ∂X
∂L

L
X

is the human physical labor share within hardware,
and πH = 1− πΨ = ∂S

∂H
H
S

is the human cognitive labor share within software.

Table 3: Contributions to annual GDP growth, 1968–2019
GDP K Ψ L H Residual

pp. 2.71 0.64 0.75 0.17 1.13 0.02
% of total 23.7% 27.9% 6.1% 41.7% 0.8%

Source: own computations based on O*NET, CPS IPUMS and BEA data.

Figure 8: GDP growth decomposition, 1968–2019

Source: own computations based on O*NET, CPS IPUMS and BEA data.
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Under the baseline calibration (Table 2) we find that the key contributors to
GDP growth in the U.S. in 1968–2019 were the accumulation of human capital H ,
followed by the accumulation of digital software Ψ and physical capital K (Table
3, Figure 8). Furthermore, while the contribution of human capital was roughly
steady throughout the studied time period, the contribution of digital software
was particularly strong in the 1970s and 1990s until mid-2000s. Our speculative
hypothesis, to be verified as new data come along, is that the subsequent reduc-
tion in this factor’s contribution to economic growth (from mid-2000s onwards)
may constitute an interlude before the next upcoming wave of AI-driven automa-
tion in the coming years (Brynjolfsson, Rock and Syverson, 2019).

4.6 Robustness Checks

Alternative Characterization of Physical Capital vs. Digital Software. In the baseline
scenario we decompose real investment into hardware and software investment
based on O*NET data on equipment used across jobs. However, the identifying
assumption of proportionality: the more manual the job is, the more hardware-
intensive equipment the worker uses, need not hold exactly. Hence, as a robust-
ness check we relax this assumption and instead concentrate on the equipment
used only in n “most manual” and “most cognitive” jobs. Given about 1000 oc-
cupations in the database, we consider n = 100, 200, 300.

As shown in Figure 9, this modification reduces the implied stocks of digi-
tal software compared to the baseline, particularly strongly for lower values of
n. This is because there are many more jobs in the database which are (almost)
entirely manual than jobs that are (almost) entirely cognitive. However, except
for the case n = 100 which is likely most noisy, the dynamics of hardware vs.
software accumulation change only very slightly. Therefore, our results regard-
ing the preferred parametrization of the aggregate production function as well as
growth accounting are robust to these changes.

Figure 9 also shows that weighting jobs by hours worked in the decompo-
sition of real investment into hardware and software slightly increases the esti-
mated share of software. However, as the dynamics of hardware vs. software
accumulation change minimally, our main results remain robust.

Evolution of Work Tasks Over Time. In the baseline scenario we identify the manual
vs. cognitive content of jobs at only one point in time, and all the measured tem-
poral variation in the shares of manual and cognitive work comes from changes
in the occupational structure of employment. However, in fact the task content
of jobs has been evolving over time. Specifically, as documented by Spitz-Oener
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Figure 9: The share of digital software in capital under alternative characteriza-
tions (in %)

Source: own computations based on O*NET, CPS IPUMS and BEA data.

(2006) based on a unique dataset from West Germany that begins in the 1970s,
over decades there has been a systematic decline in routine tasks and a system-
atic increase in nonroutine tasks within predetermined job titles. Notwithstand-
ing, given that both routine and nonroutine tasks can be either manual or cogni-
tive, the direction of impact of these trends on the implied shares of manual vs.
cognitive content of jobs is ex ante unclear and requires further scrutiny.

Hence, as a robustness check we augment our calculation of percentages of
manual and cognitive work performed in the U.S. in each year with Spitz-Oener
(2006) data on systematic variation in job tasks, broken down into routine man-
ual, routine cognitive, nonroutine manual, nonroutine cognitive, and nonroutine
analytic tasks. We make the assumptions that (i) the data on task shares within
jobs, collected at four points in time, can be linearly interpolated across all years
and extrapolated beyond the time span of the dataset,32 and (ii) the task content
of jobs identified for West Germany fully applies also to the U.S. as well.

32The observed changes in shares of job tasks are monotone over time and the linear fit is quite
good in-sample. However, theoretically one could expect these linear trends to break down out-
of-sample, particularly when the predicted task shares approach 0% or 100%. As we do not in-
clude any “saturation” effects, the current results should be viewed as an upper bound for the
extent of actual change in the task content of jobs.
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As shown in Figure 10, the current modification radically changes our assess-
ment of the dynamics of the software component of both capital and labor. The
share of human cognitive labor now rises by as much as 29 pp. in the period
1968–2019 (compared to 6 pp. in the baseline), whereas the share of digital soft-
ware in capital now rises by 34 pp. (rather than just 5 pp.). This means that
empirically, the shift from routine towards nonroutine tasks within jobs has been
accompanied by a systematic, sharp increase in cognitive tasks compared to man-
ual ones. Concurrently, given our approach to identifying the share of digital
software within capital, this shift is also reflected in systematic sharp increases in
the digital software Ψ relative to physical capital K.

Figure 10: The share of human cognitive work in labor and digital software in
capital (in %): baseline vs. time-variable tasks

Source: own computations based on O*NET, CPS IPUMS, BEA and Spitz-Oener
(2006) data.

Notwithstanding this radical change, the calibration of the nested CES pro-
duction function remains remarkably robust. The elasticity of substitution be-
tween hardware and software remains at σX,S = 1

1−θ
= 0.83. Physical capital and

human physical labor are still assessed as perfectly substitutable, whereas hu-
man cognitive work and digital software remain gross complements, now with
an elasticity of substitution of σH,Ψ = 1

1−ω
= 0.39. The biggest difference com-

pared to the baseline is observed with regard to the implied pace of software-
augmenting technical change, which drops from 1.5% per annum in the baseline
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to 0.7% per annum now. This is because now a sizeable share of technical change
is subsumed by the observed shifts in the task content of jobs and the associated
increases in the software component of capital.

Like in the baseline scenario, we find that growth in software (now at 3.9% per
annum) systematically outruns that of hardware (0.7% per annum). The extents
of both mechanization (share of machines in hardware) and automation (share of
machines in software) are upward trending – roughly in parallel until the early
2000s, but with a clear acceleration in automation afterwards. In total, over the
considered time frame mechanization progressed by about 82% (or 1.2% per an-
num), and automation – by 124% (1.6% per annum).

Table 4: Contributions to annual GDP growth, 1968–2019
Baseline

GDP K Ψ L H Residual
pp. 2.71 0.64 0.75 0.17 1.13 0.02

% of total 23.7% 27.9% 6.1% 41.7% 0.8%
Time variable tasks

GDP K Ψ L H Residual
pp. 2.71 0.34 1.28 -0.11 1.14 0.06

% of total 12.4% 47.4% -4.1% 42.4% 2.3%

Source: own computations based on O*NET, CPS IPUMS, BEA and Spitz-Oener
(2006) data.

As far as growth accounting results are concerned (Table 4), we now see a sub-
stantially larger contribution of digital software Ψ and reduced contributions of
physical capital K and human physical labor L. In fact, the contribution of hu-
man physical labor is now slightly negative because the total supply of physical
labor is now assessed as gradually falling over time as jobs are becoming less and
less manual in nature.

5 Predictions for the Future

The hardware–software framework constitutes a theoretical frame that can be
used to discuss both the past and the future of the world economy. With regard
to the future, it allows us to formulate a range of scenarios that would ultimately
place the world economy on a spectrum: secular stagnation – balanced growth
– accelerated growth – technological singularity. However, the exact prediction
depends on few key assumptions whose validity is ex ante uncertain.
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The key question is whether in the future human cognitive work and digital
software will become gross substitutes, or if they will forever remain gross com-
plements as they are today. This is the question of partial vs. full automation
(Growiec, 2022b). Under full automation, human cognitive work could be fully
replaced by digital software. That would unpin the economic growth rate from
growth in the capacities of technologically augmented labor, and instead pin it
to the growth rate of compute. Simultaneously, under full automation progress
in AI capabilities and accumulation of compute would act to reduce, rather than
increase the labor share of output as they currently do under partial automation.

The full automation scenario is therefore highly transformative. With today’s
knowledge it appears to rest on the possibility of artificial superintelligence, or
transformative AI. Its implications will be discussed in a separate subsection.

5.1 Overview of Scenarios

Let us now review the possible scenarios in the order of increasing long-run
growth rates.

• Secular stagnation. As suggested among others by Jones (2002); Gordon
(2016), output growth may gradually slow down in the future, perhaps
heading towards a steady state, driven by declining population growth
and exhaustion of the pool of new technological ideas. However, in the
hardware–software framework secular stagnation is possible only in a highly
restrictive scenario, and even in that scenario growth continues forever, al-
beit at declining rates (i.e., growth is sub-exponential).

– Assumptions. Full automation of production is impossible. Knowl-
edge spillovers in R&D are negative (ϕ < 1).

– Implications. Because some essential production tasks cannot be au-
tomated, human cognitive work and digital software are gross com-
plements. Therefore, regardless of the algorithmic skill level ψ and
available compute χK, human cognitive work remains the bottleneck
of economic growth. Growth is then driven solely by technological
progress augmenting human cognitive work, and the rate of that progress
is slowing down over time due to negative knowledge spillovers.

• Balanced growth. In a similar scenario, differing only in the magnitude of
knowledge spillovers in R&D, the hardware–software framework predicts
that balanced growth is maintained throughout the digital era. The long-
run growth rate remains similar to the ones observed today (i.e., about
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2− 3% per annum, Piketty, 2014) or is mildly larger. This is a “race against
the machine” scenario (Acemoglu and Restrepo, 2018): tasks are never fully
automated, and labor-augmenting technological progress together with ac-
cumulation of R&D capital form a dual growth engine (Growiec, 2023a).

– Assumptions. Full automation of production is impossible. Knowl-
edge spillovers in R&D are positive or zero (ϕ ≥ 1).

– Implications. Again, because some essential production tasks cannot
be automated, human cognitive work and digital software are gross
complements. Therefore, regardless of the algorithmic skill level ψ and
available compute χK, human cognitive work remains the bottleneck
of economic growth. Growth is driven by technological progress aug-
menting human cognitive work. The rate of that progress is sustained,
in the absence of population growth, thanks to the ongoing accumula-
tion of R&D capital.

• Accelerated growth. The predictions of the hardware–software framework
change dramatically once full automation of production is allowed. As hu-
man cognitive work and digital software become gross substitutes, progress
in the algorithmic skill level (ψ) – representing specifically AI capabilities –
and the accumulation of compute χK lead to gradual replacement of peo-
ple with machines within software. People are then going to be employed
only as long as their services are cheaper than that of AI. This is the baseline
case of the hardware–software framework discussed in Section 3.

– Assumptions. Full automation is possible.

– Implications. Human cognitive work and digital software eventually
become gross substitutes. From then on, the accumulation of digital
software (in particular, AI) resolves the scarcity of software in the ag-
gregate production function. Eventually, hardware becomes relatively
scarce because it is not technology-augmented. Economic growth is
then driven by the accumulation of compute, the scarce factor com-
plementary to the fast-growing capabilities of AI. In the long run, the
rate of economic growth rate is equated with the growth rate of com-
pute. Were compute to continue growing at the pace of Moore’s Law,
i.e., about 20 − 30% per annum (Hilbert and López, 2011), compared
to 2 − 3% average growth in global output (Piketty, 2014), this would
imply a growth acceleration by an order of magnitude.
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• Technological singularity. Hypothetically, under full automation, there could
be a further technological revolution in the domain of hardware, able to
alleviate the mounting scarcity of compute. That would trigger another
growth acceleration, potentially by another order of magnitude or more,
resulting in technological singularity. The likelihood of this scenario relative
to the former one depends on the extent of returns to cognitive reinvestment
in AI, i.e., its potential for self-improvement (Yudkowsky, 2013), and the
(now unknown) difficulty of achieving the next technological breakthrough
in hardware.

– Assumptions. Full automation is possible. Moreover, a new form of
programmable hardware M arrives, gradually replacing existing com-
pute χK.

– Implications. AI switches from using compute χK to the new hard-
ware M . In the long run, economic growth is proportional to growth
in M . Over the transition, it is conceivable that AI may need to re-
program itself to be compatible with the new form of hardware. Even
more hypothetically, if for some reason some essential tasks could not
be reprogrammed, then compute χK would remain the bottleneck of
economic growth, and the hypothesized new wave of growth acceler-
ation would not occur.

5.2 Implications of Transformative AI

Under the baseline specification of the hardware–software framework, all essen-
tial tasks will eventually be automated, making human cognitive work replace-
able, and thus paving the way for massive growth acceleration. Implicit in this
scenario is that AI will one day not only exceed human capabilities at each nar-
row task, but also will be sufficiently versatile and adaptive to handle the ag-
gregation and management of those tasks, strategic decision making, and R&D
tasks leading to the creation of new technologies, new tasks, and new AI ca-
pabilities. In other words, it subsumes the future arrival of transformative AI
(Trammell and Korinek, 2021; Korinek and Suh, 2024). Following a variety of
philosophical, information-theoretic, anthropological and economic arguments
(Yudkowsky, 2013; Bostrom, 2014; Tegmark, 2017; Growiec, 2022a) as well as the
broadly shared belief among AI experts (Grace et al., 2024), we expect this sce-
nario to be not only possible but actually quite likely – and hence we consider it
our baseline.

The prospective arrival of transformative AI is associated with a number of

39



fundamental questions, such as the AI alignment problem, existential risk from
misaligned transformative AI, the evolution of income inequality in the absence
of paid labor, or the value of human life in a world ruled by superhuman AI.
Of course, the hardware–software framework is too simplified to inform any of
these issues; however, it does offer systematic predictions on economic growth,
factor shares, and transformation of the labor market in such a world. Namely
the framework predicts that:

1. Transformative AI will accelerate economic growth, likely by an order of magnitude.
Output growth, once unpinned from the growth rate of labor productivity,
will eventually reach the growth rate of compute. Note that over the recent
decades compute has been growing according to the Moore’s Law, i.e., at
20− 30% per annum, doubling every 2-3 years (Hilbert and López, 2011).

2. Human cognitive work will be substitutable with AI. In a world with transfor-
mative AI, people will only find employment as long as they are price com-
petitive against the AI. As demonstrated by Growiec (2022b), under perfect
substitutability and perfect market competition, wages are then expected
to stay constant despite rapid economic growth. Under imperfect substi-
tutability, wages could grow, but still at a systematically lower rate than
output. This opens up the possibility of technological unemployment; how-
ever, the market outcome will depend also on the elasticity of labor supply.
It is conceivable that some people may be willing to work for any wage,
especially if their livelihood will be secured through other means such as
transfers or returns to proprietary compute.

3. The labor income share will drop precipitously toward zero. In a world with trans-
formative AI, technological progress and accumulation of compute will be
pushing the labor income share down toward zero as more and more jobs
are automated. Once the majority of output is contributed by AI and the as-
sociated compute, wages will cease to be the key distributive device. Other
devices will have to be sought, such as centralized redistribution of returns
to compute (the scarce factor of production), or distributed ownership of
compute.

6 Conclusion

In this paper, we have put forward the hardware–software framework – a new
conceptual framework of production and long-run growth, based on first prin-
ciples and emphasizing the role of energy and information. Nevertheless, it re-
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mains closely linked with the existing economic literature. It nests four conven-
tional macro models as special cases and can be used to inform the debate on the
future of global economic growth in the 21st century.

As an empirical application of the theory, we have constructed time series of
physical capital K, digital software Ψ, physical labor L and cognitive work H for
the U.S. in 1968–2019. We have then plugged these series into a growth account-
ing exercise. Our results suggest that the key contributor to GDP growth in the
U.S. in 1968–2019 was the accumulation of human capital, followed by the accu-
mulation of digital software. This is consistent with the interpretation (Growiec,
2022a) that we are still at an early stage of the digital era, and more profound eco-
nomic transformations should be expected as AI-driven automation gains steam
and more and more production processes are fully automated, thereby reducing
the contribution of human cognitive work towards zero (Brynjolfsson, Rock and
Syverson, 2019; Korinek and Stiglitz, 2019; Growiec, 2022b; Korinek and Juelfs,
2022; Eloundou et al., 2023).

Our results can be extended in a number of directions. First, one can build for-
mal macroeconomic models based on the hardware–software framework, with
a variety of applications. For example, Growiec (2023b) applied the hardware–
software framework to build scenarios for the future and address the question:
what will drive global economic growth in the digital age? Second, using certain
identifying assumptions one can construct time series for hardware and software
stretching further back in time, thus quantifying the role of these fundamental
factors of production over the very long run, including for example the period of
Industrial Revolution. This is needed to ascertain usefulness of the framework
as a building block in a unified growth theory (Kremer, 1993; Galor, 2005, 2011).
Third, one can add more detail to the model, such as heterogeneous tasks with
varying extents of automatability (Growiec, 2022b). This would improve the fit of
the model to the data and make it better suited to producing quantitative predic-
tions of economic growth at later stages of the digital era.
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