

Financing Innovation

Gerard Anderson, PhD
Professor and Director of
Johns Hopkins Drug Access and Affordability Initiative

Protecting Health, Saving Lives—Millions at a Time

The Politics of R&D

- While we can probably agree that innovation benefits society, a related question is are we financing innovation correctly?
- While economists know that R&D are sunk costs and should not be used to justify the high cost of a drug or a price increase, the pharmaceutical lobby often uses R&D as a justification for its high prices and price increases
- Need to examine the relationship between R&D spending and innovation

What is the Cost of R&D

- Tufts Center for Study of Drug Development quantified the R&D costs over time:
 - \$ 231 million in 1991
 - \$ 802 million in 2003
 - \$2580 million in 2014
 - Real cost increases averaged 7.9% per year
- Why is the R&D cost increasing so much faster than inflation?

Cost of Capital

- 40% of the \$2.6 billion is the cost of capital according to the Tufts study
- The 2014 Tufts study estimated the cost of capital at 10.5%
- The direct cost of developing a new drug is closer to \$1.3-\$1.6 billion
 - Cost reflects many failures

How is the \$1.3- \$1.6 billion spent?

- Ome concern is that some of this money is not actually spent on research
- Is the money being spent on scientists and equipment?
- Unfortunately, how R&D dollars are spent is proprietary information
- Last month in my testimony I requested the House Oversight Committee to review how drug companies are spending research dollars

The Model of How R&D is Financed Is Changing

 No longer is all of the R&D being done within the drug company

- New model
 - Initial research done in academic medical centers using NIH funds
 - some VC money funds phase 1 and 2 clinical trials
 - pharmaceutical company purchases the research during phase 3, completes the phase 3 trials, and markets the drug
- Is this new model more efficient in producing innovation?

Gilead and Solvaldi - An Example

- Emory researchers conducted the basic science and early testing using NIH funds
- Venture capital supported the next round
- NIH and VC each put in approximately \$200 million
- Gilead purchased the company (Pharmasset) for \$ 10 billion
- Gilead doubled the price Pharmasset was going to charge to recoup its \$10 billion investment

Incentives To Clinical Researchers

- Did the possibility to earn \$10 billion influence the type of research the academics chose?
- Have we created a bidding war for promising drugs
- Is this the most cost effective way to develop new drugs?
- You need to pay a premium for the research that fails but how much is needed to motivate researchers?

Policy Questions

- How much of the purchase price for the R&D for the drug should be tax deductible?
- Is internal development or external purchasing of R&D more cost effective?
- Should the government get a price reduction when government funds helped develop the drug?

Bayh-Dole

- Bayh-Dole allows the government to lower the price if the government has invested in the drug development
- 5 requests to NIH to use Bayh-Dole; none granted
- What would be the effect on university and industry relationships? Will it affect use of NIH research?
- What is the appropriate return on the NIH investment?

A Case Study In Innovation - Orphan Drugs

- There are 5000 rare diseases but only 5% have drugs to treat the disease
- What is the best way to motivate research in rare diseases?
- Do we need to revise the Hatch Waxman law?
- According to Hatch Waxman, rare diseases have less than 200,000 potential patients
- Current Government Incentives for orphan diseases
 - 25% tax credit (used to be 50%)
 - Additional market exclusivity period

Success – Growing Number of Orphan Drug Approvals 1980-2018

However

- Still have many disease without drugs. Are additional incentives needed?
- At same time, many drugs with orphan approvals also are blockbuster drugs
- 6 out of top 10 best selling drugs in Medicare also have orphan designations

Top Ten Drugs in US by Spending (2016 in \$ billions)

Orphan Drug Approvals for New and Existing Drugs

Cost of Clinical Trial

- Averages \$19 million with wide variation (1)
- The more effective the drug the less the cost for the clinical trial
 - Fewer patients and shorter duration needed for approval

^{1.} Moore, Thomas J., Hanzhe Zhang, Gerard Anderson, and G. Caleb Alexander. "Estimated costs of pivotal trials for novel therapeutic agents approved by the US Food and Drug Administration, 2015-2016." *JAMA internal medicine* 178, no. 11 (2018): 1451-1457

Significant Return on Investment

- For a drug that has already been developed
 - Only \$19 million spent on clinical trial
 - Potential for \$ 2 billion in additional revenue
 - PBM typically puts only one drug on formulary
 - Concern about malpractice if give the generic version of drug to a patient that has orphan status
- Argument that need to make a significant profit on blockbuster drugs to support innovation
- But is excess profits from orphan designation the best way to encourage innovation?

Thank You

