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1 Introduction

Among developed securities markets, municipal bond (muni) markets have been historically

been characterized as especially illiquid and opaque; e.g., Downing and Zhang (2004) Harris

and Piwowar (2006), Green et al. (2007), and Schultz (2012). Because the $4 trillion muni

market is also dominated by retail investors, who are generally thought to be less sophisticated

than institutional investors, regulators including the U.S. Securities and Exchange Commission

(SEC) and the Municipal Securities Rulemaking Board (MSRB) have worked at least since

2005 to improve its operational and informational efficiency.1

In this paper we examine the informational efficiency of the muni market prior to, during,

and following the demise of the insurance companies providing credit enhancement to roughly

half of the pre-crisis general obligation (GO) bonds issued by U.S. municipalities. Constructing

bond return indices by insurer allows us to isolate the impact of informational shocks to

the insurer on the muni market. Using the portfolio of Aaa-rated uninsured bonds (“true

Aaa” bonds) as a benchmark, we estimate cumulative abnormal returns (CARs) to portfolios

of insured bonds of varying underlying credit quality that obtain Aaa-certification through

credit enhancement provided by Aaa-rated bond insurers (bonds with“purchased Aaa”). We

formally test whether the returns on insured bonds (treated group) differ from returns on

uninsured bonds (benchmark) in event time as the insolvency of the insurers is realized

in other markets and by the credit rating agencies (CRAs). Finally, we perform vector

auto-regressions (VARs) to test whether the muni market is generally informed by equity

and credit default swap (CDS) markets. We also examine trade patterns of institutional and

retail investors to isolate differences in market segmentation across different investor classes.

1See, for example, SEC Commissioner Aguilar’s February 2015 statement on making the muni market “more
transparent, liquid, and fair” at http://www.sec.gov/news/statement/making-municipal-securities-market-
more-transparent-liquid-fair.html. Commissioner Piwowar’s 2014 comments on muni market inefficiencies are
available at https://www.sec.gov/news/speech/2014-spch080114msp. We discuss particular regulatory efforts
to improve this market’s efficiency in Section 2.1.
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Important for our empirical strategy, we observe that (1) the sharp decline in insurer stock

prices and spikes in insurer CDS prices significantly precede insurer credit rating downgrades,

and (2) stock price movements, changes in CDS premia, and ratings announcements for the

monoline insurers were all very well publicized.2 The largest monoline insurer in early 2007,

Municipal Bond Insurance Association (MBIA), lost 70% of its stock market value from

6/1/2007 to 1/2/2008 but retained its critical Aaa rating until Moody’s downgraded to A2

on 6/19/2008.3 Suggesting investor inattention, we observe virtually no reaction in the bond

portfolio insured by MBIA until well after the downgrade. Suggesting at least some issuer

inattention, we observe that MBIA collected nearly $58 million in new US public finance

insurance premiums in the first half of 2008.

Also important for our study is the fact that the analyzed shocks to the insurers are largely

exogenous to the credit quality of the insured municipal bonds. Over the 39-year period

from 1970 to 2009 (we calculate return indices for bonds through 2009), two unlimited GO

bond issuers (Baldwin County, AL and Harrisburg, PA) defaulted and direct GO bondholders

received 100% of par in both cases, leading to a cumulative default rate for general obligation

bonds of less than 1 basis point.4 The financial distress of the monoline insurers was a

result of their controversial foray into non-municipal structured finance products, primarily

collateralized debt obligations (CDO), not a contemporaneous increase in municipal bond

credit risk.5

2The New York Times for instance, describes a public press conference on 12/1/2007 where William
Ackman of Pershing Square Capital presented a 145 slide presentation on the potential bankruptcy of MBIA.
(See for instance: http://www.nytimes.com/2007/12/01/business/01nocera.html) Mr. Ackman was well
known for publishing a detailed report on the internet in 2002 which directly questioned MBIA’s Aaa rating.
See Appendix A for downgrade dates and other announcement dates.

3The designation “monoline” follows a 1989 ruling by the New York State Insurance Board that essentially
restricts insurers covering financial contracts from writing any other type of insurance (e.g. property, casualty,
life or health).

4The default rate for GO bonds has increased since 2009, incorporating defaults by Jefferson County, AL
(non-bank held limited GO bonds in 2012) and Detroit, MI (2013). Still, the 10-year cumulative default rate
for investment-grade GO bonds from 1970-2015 (the last year Moody’s separately calculates GO cohorts) is
less than 2 basis points. For comparison, the comparable corporate investment-grade cumulative default rate
over the same period is over 100 times larger, at 2.81%.

5Municipal plaintiffs point to CDO business to support their allegations of negligent misrepresentation
by the monoline insurers; see e.g., The Olympic Club vs MBIA (California Superior Court case number
CGC-09-487058) and Contra Costa County vs AMBAC (case number CGC-09-492055).
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We make three primary contributions to the literature. Our first contribution is a clean

and rigorous analysis of cross-market information flow. We find no evidence that insurer stock

returns or changes in insurer CDS spreads affect insured bond returns in either the pre-crisis

or post-crisis period and conclude that muni investors largely ignored the financial distress

of insurers implied by equity and CDS markets. While certain large institutional investors

capitalized on the imploding monoline insurance industry, the retail investors holding the

bonds enhanced by an insurance guarantee that was rapidly dissipating in value respond only

with significant delay following the insurers’ loss of Aaa certification.6 These results point to

continued segmentation of the muni market, despite earlier regulatory efforts to improve its

informational and operational efficiency.

Second, we address the question of whether insurance is valuable to municipal issuers in a

novel manner. Using the bond return indices we develop, we test whether bonds of varying

underlying credit quality that are insured by a common insurer have statistically different

return patterns. If the insurance “wrap” is perfect, then we should observe that bonds

insured by a common insurer have similar return dynamics, irrespective of their underlying

credit quality. If this insurance further conveys signaling, liquidity, or tax advantages (as

in Thakor (1982), Pirinsky and Wang (2011), and the Association of Financial Guaranty

Insurers (2008)), then required returns on insured bonds should be lower than returns on

uninsured bonds with identical underlying ratings (since the insurance improves liquidity,

lowers default risks, and/or signals greater credit quality within broad rating categories).

In the pre-crisis period, we cannot reject the hypothesis that bonds insured by a common

insurer have identical returns, irrespective of their underlying credit quality, or that insured

and “true Aaa” uninsured bonds have identical returns. These results suggest that muni

investors care about the Aaa rating, but care not whether it is inherent to the issuer or

purchased from an insurer. Because lower credit quality bonds are priced similarly to the true

Aaa bonds, we conclude that insurance is valuable, as long as the insurer is rated Aaa. Only

6Pershing Square Capital made a well-publicized $1.1 billion profit from their short positions in MBIA
equity and CDS.
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after the insurers lose their Aaa certification do return patterns reflect the bonds’ underlying

credit quality.

Third, we outline a robust methodology for constructing both return indices and their as-

sociated standard errors for highly illiquid bond markets. Our empirical tests are complicated

by this market’s illiquidity. Previous studies use cross-sectional or pooled panel regressions on

yields, both of which are problematic in the muni market because the infrequent trades are

endogenous to the event date examined. For example, consider an attempt to gauge the value

of bond insurance with an analysis of insured bond yields around an insurer’s credit rating

downgrade. In this case, trades of insured bonds are much more likely and more informative

around the event, whereas trades of comparable benchmark uninsured bonds may not occur

simultaneously. Without adjusting for the propensity to trade, portfolios of bonds traded

in a single cross-section will not be similar to bonds traded in even the next cross-sectional

period. This bias will be most extreme around major events such as the ones we study here.

To overcome this problem we employ the repeat sales regression (RSR) methodology

common in real estate economics to construct return indices, as motivated by Spiegel and

Starks (2016) in their analysis of the corporate bond market. Because our setting is further

complicated by the need to create characteristic-based (credit quality and insurer) return

indices in an even more illiquid market, and we adapt the generalized repeat sales regression

(GRSR) method of Peng (2012). This GRSR methodology allows us to construct return indices

at a high degree of granularity and facilitates formal hypothesis testing of differences between

sub-indices. With particular modifications for the muni market, we are able to construct bond

return indices by rating, insurer, and other bond characteristics. Our adaptation of Peng

(2012) allows the construction of sub-indices to calculate and test hypotheses across multiple

characteristics of illiquid bonds. Our GRSR indices maintain constant characteristic-matched

portfolios of bonds over (overlapping) rolling windows of one year and thus provide estimates
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of informational shocks that mitigate the confounding selection into trade bias.7 An ancillary

contribution of our paper is a straightforward method for conducting event studies in highly

illiquid markets across a large number of characteristics.

Our paper proceeds as follows. We briefly describe recent regulatory efforts to improve

the efficiency of the muni market, the demise of the monolines during the financial crisis,

and related literature in Section 2. Section 3 describes the data. In Section 4, we provide

descriptive statistics for the market, including the variation in insurance and extent of

retail investor participation. We discuss our empirical strategy and its core component, the

construction of GRSR bond indices and their standard errors in Section 5. In Section 6,

we test the differential return dynamics of insured and uninsured bonds and formally test

the informational efficiency of the municipal bond market using event studies and vector

auto-regressions. In Section 7, we discuss alternative explanations for our empirical results,

including potential confounding effects associated with the Lehman Brothers bankruptcy.

Section 8 concludes.

2 Background and Related Literature

2.1 Regulatory efforts to improve municipal market efficiency

Regulatory efforts to improve muni market efficiency fall broadly into two categories:

operational and informational efficiency. Recent efforts to improve operational efficiency

include the 2016 MSRB Rule G-18 on best execution and the new markup disclosures approved

by the SEC in November 2016. Recent efforts by the MSRB to improve informational efficiency

include the 2005 public launch of the Electronic Municipal Market Access (EMMA) trade

price data and the 2008 release of a vast archive of muni issuer disclosures.

7Appendix B provides a detailed self-contained description of this methodology, which should prove
valuable for studying return behavior in illiquid markets at higher levels of granularity than previously
available.
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Additional efforts by the SEC aim to reduce the mechanistic reliance of investors on

credit ratings. The SEC Office of Investor Education and Advocacy specifically warns muni

investors:

While some investors find it helpful to consider credit ratings when making an
investment decision, it is important that you not rely solely on credit ratings
when deciding whether to purchase municipal bonds. Investors need to undertake
their own independent review of the municipal bonds’ risk by reading the official
statement and other relevant information...

Our empirical results suggest that regulatory concern over informational efficiency is well

founded. However, our results do not indicate that municipal investors respond mechanically

to credit rating changes.

2.2 Monoline insurer financial distress

Because insuring munis with low default rates resulted in zero-loss underwriting, the

monolines historically operated with very high leverage. The leverage ratio, which is total

future value of principal and interest insured divided by statutory capital, was 216 and 195

for privately-held FSA and FGIC, respectively. Publicly-traded insurers AMBAC and MBIA

had leverage ratios of 125 and 136, respectively, although on portfolios with much larger gross

outstanding par value.8 Despite such leverage, the monoline insurance market was uniformly

rated Aaa and AAA by Moody’s and S&P respectively, and by March 2007 had CDS spreads

hovering around 20-30 bp.

Expanding their business into structured finance products jeopardized the zero-loss model.

Although prohibited from writing property, casualty, life and health insurance, the monoline

insurers are allowed to write insurance on different types of financial contracts. Most began

insuring asset-backed securities (ABS) and selling protection via CDS as early as the 1990s.

By the end of 2006, the monolines collectively insured nearly $448 billion of structured

financial products including the now notoriously risky subprime CDOs. For example, the

8All the leverage ratios are taken from Exhibit 99.2 from FSA’s Form 8-K filed with the SEC at:
https://www.sec.gov/Archives/edgar/data/913357/000110465907027165/a07-5921_38k.htm
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following table demonstrates the change in MBIA’s portfolio from 2005 to 2007. In 2005,

MBIA Selected Financial Information

2007 2006 2005

CDO par insured (US) 48,640 18,951 7,830
GO bond insured 20,742 20,777 27,586
Equity 2,336 9,849 8,065
Distance to Default 0.97 5.60 3.77
“Naive” Probability of Default 17% 0% 0%
Implied Moody’s Rating Caa Aaa Aaa
Actual Moody’s Rating (12/31) Aaa Aaa Aaa

Source: MBIA’s 2007 10-K filing.

MBIA insured approximately $27.6 billion in GO bonds and $7.8 billion in CDOs with $6.6

billion in equity capital. By 2007, MBIA insured only $20.7 billion in GO bonds and $48.6

billion in CDOs with only $3.7 billion in equity capital.9 MBIA’s distance to default in 2007

implies a probability of default (PD) of approximately 17% using a simple normal distribution

approximation. Using Moody’s published PD tables, this PD is commensurate with a very

speculative-grade credit rating (approximately Caa using 2008 realized values) rather than the

Aaa ratings awarded by Moody’s and S&P into June 2008. Moody’s ultimately downgraded

MBIA to Caa1 on December 19, 2008.

As subprime housing and securitization markets deteriorated, equity and CDS markets

indicated severe distress for AMBAC as well as MBIA. These insurers lost 75% and 70% of

their stock market valuation by the end of 2007, respectively, with CDS spreads reaching

nearly 500bp by April 2008. By stark contrast, the other publicly traded monoline, Assured

Guaranty Corp, had no exposure to CDOs and ended 2007 with no loss in market value.

Appendix A summarizes key dates in the collapse and subsequent consolidation of the

monoline insurance industry.10

9All values from MBIA’s 2007 10-K filing. Equity values use the balance sheet shares outstanding with the
last closing price of the calendar year, and distance to default is calculated using a standard Merton Model
with default trigger at short-term liabilities plus half of long-term liabilities and realized equity volatility
during the calendar year.

10See Moldogaziev (2013) for additional details on the monoline insurers through the crisis period.
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2.3 Related literature

Early muni market research focused primarily on the puzzling empirical evidence that

long-term tax-exempt yields are too high relative to after-tax yields on taxable bonds.11

The improved disclosure of trade prices and issuer fundamentals discussed in Section 2.1

helped expand the literature to analyze determinants of muni credit ratings (as in Hajek

(2011) or Palumbo and Zaporowski (2012)), real economic effects of muni rating changes

(as in Cornaggia et al. (forthcoming) and Adelino et al. (2017)), the relative importance of

default, liquidity, and tax components in muni credit spreads (e.g., Wang et al. (2008), Ang

et al. (2014), and Schwert (2017)), municipality financial constraints (Ang et al. (2017)),

and market segmentation (e.g., Pirinsky and Wang (2011), Schultz (2012) and Babina et al.

(2017)). To this growing literature, we contribute analysis of this market’s informational

efficiency. Specifically, we analyze the links between the muni market and related equity and

CDS markets.

Similar analysis examines links between the corporate bond and equity markets (e.g.,

Kwan (1996), Downing et al. (2009)), and the links between these developed markets and the

relatively young CDS markets (for instance, Blanco et al. (2005), Longstaff et al. (2005) and

Norden and Weber (2009)). Even though we study a more recent time period–marked by

rapid increases in information technology–our analysis indicates a greater degree of market

segmentation than prior papers. Indeed, we find that the cross-market informational efficiency

in the muni market is orders of magnitude smaller than that previously observed in the

corporate bond market.

We also contribute to an existing literature examining the value of bond insurance. The

general consensus of the early literature (e.g., Cole and Officer (1981) and Kidwell et al.

(1987)) is that insurance provides issuers a net benefit, potentially due to signaling effects as

11For examples, see Trzcinka (1982), Kidwell and Trzcinka (1982), Skelton (1983), Buser and Hess (1986),
Kochin and Parks (1988), Green (1993), Green and Oedegaard (1997), Chalmers (1998)Chalmers (2006),
and Longstaff (2011). Related papers appeal to the tax-sensitivity of the muni investor to explain other
puzzling phenomena; see Starks et al. (2006) and Landoni (forthcoming) regarding the “January effect” and
the original issue premium, respectively.

8



in Thakor (1982), tax effects as in Nanda and Singh (2004), or information production as

in Gore et al. (2004). More recent papers present mixed evidence. Several papers suggest

less benefit (or even negative benefit) over time (e.g., Bergstresser et al. (2010), Lai and

Zhang (2013), Bronshtein (2015), and Chun et al. (2015)). An exception is Wilkoff (2013)

who concludes a stable gross benefit of eight basis points.

The effect of bond insurance on bond returns, however, has not been investigated. Using

our comprehensive data over the pre-crisis, crisis, and post-crisis periods, we are able

to investigate differential return dynamics for insured and uninsured bond portfolios of

similar underlying credit quality. After the downgrade of the monoline insurers, insured

bonds substantially underperform uninsured bonds which seems to indicate a “flight-to-

quality” dynamic in the municipal market which may help explain the yield inversion puzzle

documented in Bergstresser et al. (2010) and Chun et al. (2015).

Also related is work by Brune and Liu (2011) who analyze the change in tax-adjusted

yield spreads on a limited set of insured bonds on particular dates before and after insurer

downgrades. Our contribution relative to their study is a more thorough analysis of return

dynamics across insurers and underlying rating classes for the universe of municipal bonds

over the entire period covering monoline demise. Our approach allows us to isolate the effects

and evolution of insurers’ equity, CDS, and ratings changes on matched return indices and

statistically evaluate Granger causality within a full VAR setting.

Finally, a related study by Chung et al. (2015) examines the impact of insurer CDS

information on the yields of insured munis in a panel regression setting. However, they are

unable to separately identify the speed of transmission across markets over time and they

fail to control for time variation in the underlying credit risk of the issuer. Additionally,

by studying only yields of bonds that trade in each monthly period, their methodology is

potentially biased by the differential informativeness of the insured and uninsured bond

trades. Our contribution relative to their paper is the creation of bond return indices allowing
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estimation of insurer effects at the daily level and controlling explicitly for time variation in

underlying credit quality.

3 Data

We construct our sample from a variety of sources to describe the municipal bond universe

from 2005 to 2016. At times, we focus on specific subperiods, most notably the 2007-2009

crisis period, or the entire period before Moody’s municipal bond recalibration in April 2010.

We begin with the Mergent Municipal Bond Securities database (Mergent) which covers all

municipal bonds issued by June 2016 (our end of sample period). The database consists of

3,555,964 bonds issued by 53,045 municipal issuers across different levels of government. From

there, we limit our sample to include only bonds that are unlimited tax general obligations

(GO bonds), issued between 1960 and June 2016, have a positive offering amount and coupon

rate, and represent new borrowing (i.e. not for re-funding purposes).12 We also exclude all

bonds that are offered via unconventional channels (e.g. limited offerings, private placements,

and remarketing), and a small number of bonds that are issued by U.S. territories other than

Puerto Rico.

Two key limitations of the Mergent data are important to note. The Mergent database

retains only the most recent value of a bond rating and insurer; the history of its insurer and

underlying rating is overwritten with each update. Because each bond’s underlying rating

and the contemporaneous identity of its insurer are both critical factors in our analysis, we

supplement the Mergent data with several sources. We find that the majority of municipal

bonds have changes in insurer, credit rating, or both over our sample window. We conclude

that relying exclusively on Mergent data will result in erroneous inferences regarding original

insurer and credit quality at issuance.

12We focus on GO bonds because they have the full faith and backing of the local government, which can
raise taxes to pay coupons if necessary. In contrast, revenue bonds have a claim on funded project revenues,
but no recourse if the project fails.
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3.1 Supplementing bond insurers and ratings

As noted above in Section 2.2, the financial crisis resulted in the bankruptcy, sale, or

restructuring of the monoline insurers’ portfolios. To reconstruct the original and subsequent

insurers of each bond, we perform the following steps:

• Because the municipal bond portfolio of FSA was acquired in whole by Assured Guaranty
and merged into a newly created subsidiary (AGM) on July 1, 2009, we assign FSA as
the insurer for all bonds that are insured by AGM but are issued prior to that date.

• Both Radian and CIFG were likewise acquired by Assured Guaranty, in 2015 and 2016
respectively. We collect from Assured Guaranty the bond CUSIPs of the portfolios
transferred from CIFG and Radian and reattribute the original insurer to each.

• MBIA re-insured FGIC’s investment grade municipal bond portfolio in 2008; MBIA
then carved out NATL as a wholly-owned subsidiary to hold its monoline insurance
business on February 18, 2009; NATL subsequently novated the FGIC portfolio on
August 19, 2013. We collect from FGIC the CUSIPs of all bonds transferred from
FGIC to NATL and attribute these bonds to FGIC as the original insurer. All other
NATL-insured bonds (not associated with FGIC) issued prior to the creation of NATL
on February 18, 2009 are assigned to MBIA as the original insurer.

Because we cannot track the complex web of all reinsurance agreements, our reconstructed

insurer data, by issue, is likely incomplete. However, given the novation data obtained

directly from the insurers (and the fact that virtually no new bond insurance was written in

late 2008-2010) we believe that our database effectively undoes the overwriting of data by

Mergent and correctly assigns the contemporaneous insurer appropriate for each bond-month

(or bond-trade) pair.

We backfill the credit ratings histories overwritten by Mergent with a comprehensive

history of S&P and Moody’s ratings for municipal bonds obtained directly from these rating

agencies’ websites.13 Combining these hand-collected insurer and rating histories with the

bond characteristics provided by Mergent results in a comprehensive muni database with

accurate contemporaneous information on the underlying rating of the issuer and the identity

13We are grateful to Ryan Israelsen for providing us these data. Given the magnitude of rating updates
even prior to Moody’s scale recalibration in 2010, the ratings data provided by Mergent proved inadequate
for our analysis.
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of its insurer. Ratings are coded from 21 (highest) to 1 (lowest). Many bonds are rated by

more than one CRA; when ratings are available from multiple CRAs, we employ the harshest

as our measure of underlying credit quality.

3.2 Bond trade data

We obtain trade data for the bonds in the sample from the MSRB available via WRDS

from January 2005 to present and merge with the Mergent data by individual bond CUSIP.

This merge results in 9,502,128 customer trades for 445,440 bonds. (We do not include

intermediate dealer-to-dealer trades because our primary research question is about investor

behavior; only the prices investors ultimately pay for these bonds are relevant). We then

filter the trade data by removing primary market transactions, trades that occur less than

one year prior to maturity, and price outliers (bonds with prices less than 50 or higher than

150).

After cleaning, the trade sample has 7,284,088 trades in 281,882 bonds. For the purpose

of describing the data and secondary market trends, our summary statistics are based on this

sample. If a bond has multiple trades in a day, we compute the price for the bond on that day

using the volume-weighted average of prices, resulting in 4,784,935 CUSIP-day observations.

Our methodology (described later) requires a minimum of two data points per bond as our

unit of observation is the change in price between two trade price observations. Converting

from trades to trade pairs, we obtain 4,503,053 observations. Because rating changes are

priced, we exclude pairs of trades between which a change in credit rating of the underlying

bond occurs. This requirement reduces the sample size to 4,456,041 observations spanning

2,891 days from 1/5/2005 through to 6/16/2016. We estimate insurer-by-credit rating daily

bond return indices with this final sample.

3.3 Other data

We obtain data on the monoline insurers themselves from a variety of sources. For

publicly traded insurers, we obtain daily stock prices from CRSP and collect available daily
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data on 5-year CDS contracts on insurers from Datastream. From Moody’s press releases

and news updates available on their website, we obtain the credit rating history of the

insurers. We obtain data on corporate restructuring dates from a wide variety of sources,

including Moldogaziev (2013) and from insurers’ websites. An overview of this chronology

is in Section 2.1 and key dates are listed in Appendix A. Finally, we merge our universe of

bond characteristics, historical credit ratings, insurers and trades with mutual fund holdings

data available from CRSP.

4 Characteristics of the Municipal Bond Market

4.1 Variation in credit quality

There is substantial heterogeneity in the usage of bond insurance across states, as can be

seen in Table 1. For instance, 71% of California domiciled issuers’ GO bonds are insured,

whereas only 34% of Texas domiciled issuers are. To some extent, this reflects differential

credit quality between issuers; throughout much of the period, the State of California had

a credit rating more than six notches below the State of Texas.14 It is therefore of critical

importance to control for contemporaneous changes in municipal issuers’ underlying credit

quality in our empirical analysis of insured vs. uninsured bonds.

Figure 1 shows the underlying credit quality at issuance for all GO bonds in Panel A, and

all insured GO bonds in Panel B. Obvious in Panel A is the proportional increase in Aa rated

bonds following Moody’s 2010 scale recalibration (we limit our empirical analyses in Section

6 to the period ending in 2009 for this reason). We also observe that a substantial portion of

GO bonds did not obtain credit ratings prior to the financial crisis. Following the crisis, the

portion of unrated bonds falls significantly. In Panel B, we observe substantial heterogeneity

in the underlying credit quality of insured bonds over time, reinforcing the conclusion from

14This is a generalization since there are many cities and counties within each state that are also issuing
GO bonds. However, examination of the average ratings by state confirms the broad pattern discussed here.
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Table 1. Figure 1 actually understates the variability of underlying credit, since it plots the

issuer rating at time of issuance, but not the evolution of that issuer’s credit quality.

Table 2 depicts the differences in characteristics between issuers purchasing insurance

and uninsured issuers. Bonds without insurance are approximately 70% larger in issue size

(although mean issue size is very small in both samples). Intuitively, insured bonds have lower

underlying ratings by almost two notches on average, which is preliminary evidence that

poorly rated issuers are more likely to purchase insurance. Our finding that insured bonds

are issued on average at lower ratings is consistent with the result reported by Bergstresser

et al. (2015) that insured bonds have significantly higher ratings transitions (upgrade more)

than uninsured bonds. Insured bonds are less likely than uninsured bonds to be held by

mutual funds: 1.20% versus 1.44%.15 This finding is consistent with insured bonds being

primarily held and traded by retail investors–an assertion we investigate more formally by

trade size analysis in the next section.16

4.2 Liquidity and retail investors

Table 3 reports differences in secondary market liquidity measures (number of trades

and average trade size) for GO bonds with and without insurance. The table also reports

differences (between insured and uninsured bonds) in the percentage of trades attributable

to retail investors (e.g. in blocks smaller than $100,000). All statistics are reported over the

entire 2005-2016 period and the significance of differences is based on two-sided test statistics.

Comparing first the Aaa rated bonds, we observe as expected that the overwhelming

majority are uninsured (issuers with Aaa quality have less incentive to purchase a Aaa

certification than lower-rated issuers). The average trade size among the insured Aaa bonds

15We merge GO bond CUSIPs with CRSP mutual fund holding data to calculate the percentage of each
bond being held collectively by mutual funds. The low level of mutual fund ownership reported here reflects
the fact that mutual funds have ownership interest in only about 3% of bonds in our sample. Conditional on
a bond being held by mutual funds, the extent of mutual funds’ ownership averages to about 44%.

16According to SIFMA statistics, individuals held 43.3% of the entire muni market in 2017Q1. Mutual
funds held 23.8%, insurance companies held 13.5% and banks held 15.2%. SIFMA does not, however, provide
statistics on the proportional holding of insured versus uninsured or revenue versus GO bonds. SIFMA data
is available here: http://www.sifma.org/research/statistics.aspx.
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is significantly smaller than the uninsured, consistent with the conjecture that insurance is

preferred by retail investors even at this level of credit quality.17 Indeed, the average trade

size is smaller for insured bonds at every investment grade group (Aaa, Aa, A, and Baa) and

for the non-rated bonds (although the difference at the Aa level is insignificant).18

Consistent with primary market statistics provided by SIFMA, we observe that secondary

market trading is likewise dominated by retail investors (more than 50% of trades are less than

$100,000 blocks) at every rating level. Again consistent with the conjecture that insurance is

preferred by retail investors, we observe even greater retail participation in insured bonds

than we observe in uninsured bonds among investment grade bonds.

5 Empirical Methodology

5.1 Event study

To test whether muni investors react to information readibly available from other markets,

we examine insured municipal bond returns in response to particular events in the demise

of the monoline insurance industry in 2007-2008. Specifically, we test the extent to which

the muni market is informed by equity and CDS markets. Therefore, we focus on the

publicly traded MBIA and AMBAC. Uniformly rated Aaa prior to 2008, these insurers were

downgraded over the course of 2008, following shocks to their equity and CDS markets.

Figure 2 plots cumulative stock returns and five-year CDS premiums for MBIA and AMBAC

in Panels A and B, respectively. We identify the “equity distress date” as the date of the

largest loss in market capitalization. This distress date occurs on October 25, 2007 for MBIA

and November 1, 2007 for AMBAC. These dates are represented as vertical dashed lines in

Figure 2. Also marked is the initial downgrade (from Aaa) on June 19, 2008.19

17The purchase of insurance by Aaa issuers is puzzling, and we find little evidence later in the paper that
these bonds have lower returns than their uninsured counterparts. In conversation, a former MBIA employee
explained that retail investors view “belts and suspenders” as complements and not substitutes, somewhat
confirming that at least some retail investors have a preference for doubly insuring their holdings.

18We do not tabulate the 25 bonds with non-investment grade rating.
19Given the complexity surrounding the structure of the insurers there is some ambiguity whether the

downgrade date for the insurance subsidiary (6/5/2008 in the case of MBIA) or the downgrade of the holding
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We define three sub-periods based on these dates. Sub-sample 1 runs from the beginning of

the data sample (January, 2006) until the insurer’s stock market distress date. Sub-sample 2

runs from the distress date until the issuer downgrade. Sub-sample 3 runs from the downgrade

to the end of the sample period (December, 2009). The following sections examine the returns

on the municipal portfolios insured by MBIA and AMBAC across these periods.

5.2 VAR and Granger causality tests

We examine the extent to which the muni market is informed by linked equity and CDS

markets more generally using a VAR model of muni bond returns and insurers’ stock returns

and changes in their CDS premia. We choose the order of the VAR model based on the

Akaike Information Criterion (AIC). From the VAR model, we can then test for Granger

causality among the linked markets. Likewise, we also use the VAR to model the interaction

between net order flow of retail and institutional investors and perform Granger causality

test to infer the relative speed of responses by retail and institutional investors.

5.3 Computing bond returns

To conduct an event study and analyze the time series behavior of insured bonds, it is

critical to have a reliable measure of the average return pattern of these bonds over time. The

ideal way to obtain a return index is to have the same bonds trade every day, then compute

the simple (or weighted) average return for each day. Several problems present in application

to the muni market:

• Munis are far less liquid than corporate bonds. Because they do not trade often, data
required to compute a day’s average is sparse, resulting in unreliable estimates of
averages.

• The computed daily average reflects the average return (or yield) of only bonds that
trade on a given day. The small subset of traded bonds is not representative of the
return (or yield) of bonds in the entire portfolio.

company is most relevant. Since the insurance subsidiaries had recourse to the holding company, and in
most cases capital infusions and equity offerings were done at the holding company level, we choose the later
“full company” downgrade date. The later date should also bias us against finding post-date CARs; as we
demonstrate, the results are not particularly sensitive to that assumption.
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• Often, the fact that a bond trades on a given day is not exogenous. When the trade
itself is endogenous to the event of interest (such as an insurer downgrade) one cannot
infer average effects from observing only the most affected bonds.

• Municipal bonds are heterogeneous; they differ along many dimensions, most importantly
credit quality, the presence of insurance, and the credit quality of the insurer.

These problems are exacerbated during the financial crisis, where liquidity may be a

complicated and time-varying function of bond characteristics. We find in Section 4.2 that

insured bonds are more likely held and traded by retail investors and their liquidity needs may

differ markedly from large institutions. The very limited attempts to mitigate the trading

selection effects have generally involved estimating a complex functional selection model

(as in Liu (2012)) or by focusing only on a subset of highly liquid bonds, as in Chun et al.

(2015). Since we are interested in the flow of information daily into the muni market before,

during, and after the crisis, neither of these approaches are satisfactory. Instead, we follow

the approach taken by Spiegel and Starks (2016) in the corporate bond market and adapt

the RSR method to create daily return indices by insurer and rating. The RSR method is

commonly employed to construct return indices for real estate assets, another asset class

with substantial heterogeneity across characteristics and significant illiquidity. Substantial

modifications of these methods are required to adapt them for bond markets (and specifically

for muni markets) and we provide a detailed description of our return index construction

procedure in Appendix B.

Briefly, we adapt GRSR developed in Peng (2012) to calculate separate returns for

house prices in small submarkets. For all bonds insured by a particular insurer, we use

duration-weighted yield changes across pairs of trades to approximate returns and regress

these returns on daily time dummies in a GLS framework that overweights trade pairs in

closer proximity. Simultaneously, for each rating class (still within the set of bonds insured

by a specific insurer) we estimate factor sensitivities using an Expectation Maximization

(EM) algorithm. From these we are able to construct separate return indices for each insurer

and each rating class and compare them to return indices constructed for uninsured bonds by

17



rating class. While similar to the methods of Spiegel and Starks (2016) and Wilkoff (2013)

in spirit, our return construction is novel in that it provides a new method for constructing

indices for characteristic-based subgroups with very sparsely spaced data. We construct these

indices only through the end of 2009 for two reasons. First, Moody’s announced its plan

to recalibrate municipal bond ratings on March 16, 2010. This recalibration results in a

discontinuity in the portfolios of insured bonds by ratings. Second and more importantly, the

market for monoline insurance had collapsed by the end of 2009.

The fact that our return indices are estimated complicates statistical inference compared

to a standard event study in liquid markets. We address this problem by adapting bootstrap

sampling methods from Peng (2012) in order to estimate standard errors for specific sub-

market return indices.

6 Empirical Results

This section reports the results from our main empirical analysis. First, we document the

contemporaneous lack of response in the market for muni bonds with credit enhancement

provided by MBIA and AMBAC, both graphically and with formal tests. This section also

provides empirical results indicating that muni investors value insurance, but only so long

as the insurer maintains a Aaa certification from the CRAs. Next, we compare the relative

speed of response between retail and institutional investors. Finally, we test the general

information transmission between the muni market and linked equity and CDS markets.

6.1 Tests of return divergence

Figure 3 presents estimated bond return indices for true Aaa uninsured bonds and by

insurer for the four year period from January 3, 2006 to December 31, 2009. It is immediately

apparent that there is little difference in bond returns between true Aaa uninsured bonds and

the insured bond portfolios (purchased Aaa bonds) prior to January 1, 2008. We interpret

this result as investor-perceived value in insurance, since the insured bond portfolios include

bonds of much lower underlying credit quality, which should command commensurately higher
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returns otherwise. Insured portfolio returns begin to diverge sharply from their Aaa uninsured

benchmark portfolio in August of 2008; thereafter returns on the true Aaa uninsured bonds

dominate the insured portfolio returns. This result is what we would expect when the market

devalues the insured bonds upon the loss of insurance value.

The comparison of the muni market response to the financial distress of MBIA and

AMBAC to that of the equity and CDS markets observed in Figure 2 is striking. The major

stock price plunges for MBIA and AMBAC occur in late 2007, and by April 2008, CDS

spreads for both MBIA and AMBAC had reached nearly 500bp. Yet the value of the insured

portfolios diverge from their true Aaa benchmark only after Moody’s and S&P downgrade

the insurers several months later in June of 2008, and then with a substantial lag.

Figure 4 depicts the differential return patterns for MBIA and AMBAC stratified by their

underlying credit rating.20 For both insurers, returns in the pre-crisis period are identical

across ratings, as would be expected if the value of insurance dominated underlying credit

risk. As the insurers’ financial distress increases, lower-rated bonds begin to underperform

higher-rated bonds insured by a common insurer.

In Table 4 we formally test for differences in the cumulative returns between the Aaa

uninsured benchmark and portfolios insured by MBIA and AMBAC over the three distinct

sub-periods defined above. Prior to the insurers’ downgrade, there is virtually no difference

between the returns on the insured bond portfolios and the portfolio of Aaa uninsured bonds.

Post-downgrade, the insured portfolios dramatically underperform their Aaa uninsured

counterparts, likely indicating a “flight to quality” in the muni market. However, there is

no significant difference in the returns of insured and uninsured bonds between the distress

date and the downgrade date – the period during which both MBIA and AMBAC lose over

90% of their stock market value (see Figure 2). In short, we show that the return divergence

only occurs after the downgrade, which is several months after the equity and CDS markets

20Because MBIA was able to sell insurance to 121 Aaa-rated bonds, while AMBAC only to 4, we are able
to reliably estimate the Aaa bond return index for MBIA but not for AMBAC.
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reflect the insurers’ distress. If the muni market were informationally efficient, we should

expect to observe the divergence to occur earlier.

6.2 Measuring investors’ attention

The value of financial guaranty insurance depends on the credit quality of the insurer. In

Section 6.1 we show that in the pre-crisis period, investors valued the insurance provided by

the monoline insurers. Here we ask a related question: how quickly did investors in insured

municipal bonds realize that the value of the guaranty provided was evaporating? While

there was little focus on the monoline insurance market in the years from 1990-2006, some

investors (including the widely publicized short position by activist investor William Ackman

of Pershing Square Capital) noticed and publicized the risks accumulating in the sector. Still,

the stock price performance of the major publicly traded insurers does not indicate that

equity investors priced distress risk for these insurers in the first half of 2007 (see Figure 2).

In the second half of 2007, the market value of MBIA and AMBAC imply a drastic increase

in default risk. If muni investors were paying attention to the equity market, they should

infer that the value of their insurance had fallen. This observation should have led to negative

relative price pressure as marginal investors either sold insured bonds, purchased true Aaa

uninsured bonds, or both. The impact of insurer distress should be greater among bonds

with lower underlying credit quality. If instead institutional factors drive municipal bond

sales and purchases, the wedge between the true Aaa uninsured bond portfolio and insured

bond portfolio returns would manifest following a downgrade of the insurers.

We compute abnormal returns for MBIA- and AMBAC-insured bonds relative to the

return on the true Aaa uninsured index. Figure 5 plots these CARs (accumulated from the

beginning of 2006) along with bootstrapped standard errors. Two vertical lines mark the

equity distress date and the downgrade date.21 It is immediately apparent that there is no

21In an earlier version of the paper, we replicate this exercise for the two primary privately held insurers,
FSA and FGIC and see very similar patterns. The privately held nature of these insurers complicates our
information emphasis, since no stock return distress date exists for them. In addition, in the spring of
2008, FSA received large equity and credit line infusions from its parent, Dexia, and FGIC entered into an
agreement to split the (largely insolvent) company into a “good” portfolio and “bad” portfolio with Goldman
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significant difference between returns on insured portfolios and returns on true Aaa uninsured

bonds throughout 2007, for either insurer. MBIA and AMBAC portfolios exhibit similar

performance, though CARs for MBIA become slightly negative in the spring of 2008.

The figure also demonstrates a dramatic decline in the value of insurance after the

downgrade of the insurer, but these negative returns occur very slowly reaching their minimum

approximately 125 trading days (half a year in calendar time) after the downgrade event.

More surprisingly, the tumult in the monoline insurer equity and CDS markets has virtually

no effect on muni CARs. Stock market distress dates are 158 and 163 trading days prior

to the downgrade date for AMBAC and MBIA respectively, and no effect in that period is

evident in the plot. There is a small downward drift in the CARs several months after the

equity market collapse; it is difficult to attribute this to new information about the insurers

entering the stock market (prices had already fallen nearly to their lows).

We formally test the hypothesis that insurer ratings matter more to investors than market

information about insurer solvency by computing CARs and their associated bootstrapped

standard errors over various windows around each event date. The results are reported in

Table 5, with Panel A corresponding to the equity distress date and Panel B to the downgrade.

For both insurers, no information in the 250 days preceding either the distress date or the

downgrade causes any significant abnormal returns for the insured portfolios. However, the

behavior of CARs in the post-event windows clearly differ between the two events. The

lower part of Panel B shows that there are significant, albeit still small, negative returns in

the 20 trading days immediately following the downgrade (of 48 bps and 74 bps for MBIA

and AMBAC respectively). These negative returns accumulate to reach a maximum of over

1.84% (MBIA) and 2.55% (AMBAC) over the 120 days post-downgrade. These negative

CARs persist for well over a year after the downgrade. On the other hand, as shown in the

lower part of Panel A, there is much less evidence of significantly negative CARs following

the equity distress date. The CARs only become significantly negative for both insurers if

Sachs acting as sales agent. For these reasons, we focus on the large publicly traded insurers in the text, but
results on FSA and FGIC are available from the authors.
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we look at the 250-day window after the distress date, which includes the downgrade. We

conclude that investors in the muni market ignore easily obtainable information from directly

related markets and react with significant delay to institutional news.

6.3 Measuring investors’ attention: institutional versus retail

As in Section 4, we define trades smaller than $100,000 as retail. Trades larger than or

equal to this amount are classified as institutional. Figure 6 shows buy and sell trading volume

in MBIA-insured bonds by institutional and retail investors around the equity distress date

and downgrade date. (We observe a similar pattern for AMBAC insured bonds, omitted here

to save space and available from the authors). Trade volume among institutional investors

indicates net sales on some dates, but remains pretty balanced. In contrast, retail investors

are (collectively) always net buyers. Nothing from Figure 6 indicates a strong reaction from

either institutions or retail investors to either the equity distress date or the downgrade in

the short term, but Figure 6 does indicate differences between these investor types in terms

of net order flow.

The results in Figure 7 further indicate a difference (over time) in this cross-sectional

difference (between institutions and retail investors). Specifically, Figure 7 plots the ratio of

sell volume by institutions scaled by the sell volume by retail investors over time between

January 2006 and the end of 2009. The volume is aggregated across all bonds insured by

MBIA and AMBAC. Here we observe a spike in the ratio immediately following the distress

date in MBIA’s stock price suggesting that at least some institutions responded either to

the equity market or to the underlying information priced by the equity market. The largest

spike in the sell ratio occurs in March 2008, which follows shortly after Moody’s confirmed

the Aaa rating on February 26, 2008, but with a “negative outlook”. This spike provides

the most compelling evidence that institutional investors are more responsive than retail

investors to information regarding the value of the credit enhancement provided by MBIA

and AMBAC. The next subsequent spike occurs with a lag following the downgrade on June

19, 2008.
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More formally, we perform Granger causality tests of institutional and retail trade flows

in Table 6. Among insured bonds, institutions’ and retail investors’ net trade flow Granger

cause each other in the period prior to the insurer equity distress date. However, neither

investor type leads the other in the important period between distress date and downgrade.

After the downgrade, institutional net trade flow significantly leads retail net trade flow. We

conclude that neither group was timely in the period prior to the downgrade, but institutions

respond faster following the downgrade. We report results for the uninsured bonds for

comparison. Here, institutions lead retail investors in the important period between distress

and downgrade, but we do not draw strong conclusions from this result.

Together, the results in this section support the joint conclusion that the entire market

was very slow to update, but that institutions reacted in a more-timely manner than the

retail investors.

6.4 Information flows across markets

In addition to testing the flow of information around particular event dates, our bond

return indices allow us to test which direction information moves from one related market to

another, more generally. Specifically, we estimate a VAR model on the daily insured bond

portfolio indices for AMBAC and MBIA, their equity returns, and the changes in their CDS

spreads. Table 7 presents the F-statistics from Granger causality tests of the time series VAR.

Consistent with the results in Blanco et al. (2005) and Norden and Weber (2009), we find

strong evidence that stock market movements Granger cause CDS spread movements, but not

the reverse. More importantly for our research question, we find no evidence that either CDS

spreads or stock returns of insurers Granger cause any movement in insured bond returns.

This result can also be seen in Figure 8, where we plot the impulse response functions from

the VAR model for MBIA. Except for the impulse response of each variable to its own shock

(in subplots on the diagonal), the only statistically significant impulse response observed is
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that of CDS spread to shock in stock return.22 We again conclude that muni investors ignore

information provided from equity and CDS markets.

Table 8 presents an expanded VAR model which nests MBIA and AMBAC’s stock returns,

changes in CDS premium, and insured bond returns and tests for causal flows of information,

to account for possible correlation between MBIA and AMBAC. As before, each insurer’s

stock return Granger causes its CDS changes, but more importantly, no information from

CDS or equity markets Granger causes returns in either insurer’s municipal bond portfolios.

Curiously, we find evidence that changes in MBIA CDS spreads strongly Granger cause

changes in AMBAC CDS spreads. We attribute this result to the widely publicized trading

of Pershing Square Capital in the CDS of MBIA, which led to that market being the primary

source of information on the health of the municipal insurance market.

7 Alternative Explanations

The purpose of this paper is to test the informational efficiency of the municipal bond

market. We are motivated by concerns among regulators regarding the operational and

informational efficiency of this market, and the empirical results in Section 6 suggest that

regulators’ concerns are well founded. We consider next a host of alternative explanations for

our empirical results.

7.1 Trivial value of insurance

Observing no reaction in the muni market to the lost credit enhancement suggests either

that the muni market is highly segmented or that the insurance provided by MBIA and

AMBAC was never of any value. Indeed, the probability of default among munis is lower than

any other asset class, save Treasuries.23 The $378 million in 2007 gross premiums written by

MBIA in its domestic public finance business provides prima facie evidence that the insurance

22The impulse response functions from the VAR model for AMBAC provide similar results, and hence are
omitted in the interest of space.

23Although low, default probability is not zero. Schwert (2017) finds that the muni spread over Treasury
bonds reflects default risk, not just a liquidity premium.
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was of some value to the issuers paying premiums. Also of note is that MBIA earned $58

million in US public finance gross premiums in the first half of 2008, after its equity distress

date. The empirical evidence we document in Section 6 indicates that the insurance was

also valued by investors (retail investors in particular) prior to the insurers’ downgrade. We

leave for future research a more rigorous analysis of the channel(s) by which investors value

insurance (lowered credit risk, provision of tax advantages, and/or enhanced liquidity) in

the time periods prior to, during, and following the financial crisis and demise of the once

dominant monoline insurers. For our purposes, we note that if the insurance never had value,

we should observe no reaction in the muni market to the demise of the monolines. Such is

not the case. Indeed, we find significantly negative CARs following the downgrade event.

We conclude not that the muni market failed to react, but that it reacted with significant

delay. This reaction, though delayed, is inconsistent with the explanation that the credit

enhancement provided by MBIA and AMBAC was never of any value.

7.2 Lehman Brothers, bailouts, and crisis

Because the demise of the monolines occurs during the financial crisis, we consider the

extent to which other crisis-related effects confound our results and interpretations. In

particular, although the negative CARs documented in Table 5 and Figure 5 are significantly

delayed relative to the information available from equity and CDS markets and insurer

downgrades, they do not appear delayed relative to the Lehman Brothers bankruptcy on

September 15, 2008, arguably the peak of the financial crisis. However, the significant negative

CARs observed in Figure 5 precede the Lehman bankruptcy by more than a month. We also

examine the trading pattern around the Lehman bankruptcy, as shown in Figure 9, and find

business as usual. We conclude that muni investors were not simply shaken by the Lehman

failure.

We also consider that investors’ risk aversion increased over this crisis period (apart from

any change in default risk). However, because the CARs control for the benchmark return on

the uninsured portfolio, which should also be affected, we believe the negative CARs reflect
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the declining value of insurance. We also note that any “flight to quality” from riskier asset

classes, such as corporate bonds and equities, would have the opposite effect on the CARs

reported in Table 5 and Figure 5. In addition, increasing risk-aversion should cause investors

to value both the presence and the absence of insurance more. Investors with higher risk

aversion should react sooner to the devaluation of insurance rather than later. A sudden

spike in risk aversion (say coinciding with the Lehman failure) would lead to both a sudden

discrepancy between low-rated and high-rated municipals (including the insurance wrap) and

commensurate buy-sell trade volumes, neither of which we find in the data. Certainly higher

risk-aversion investors would react to a change in the riskiness of their portfolios by the

removal of insurance. A spike in risk-aversion would have to be combined with an ignorance

of insurance value in order to generate our results, and this combination seems especially

unlikely.

Finally, we consider that the delayed reaction of muni investors might reflect an expectation

of a federal bailout of MBIA and AMBAC. Although we have no data on investors’ beliefs, the

reaction in equity and CDS markets indicate that equity and derivative securities investors

shared no such expectation of bailout.

7.3 Limits to arbitrage

We consider that any short sale constraints would mitigate price discovery. The apparent

non-reaction of the muni market to relevant information available from linked markets may

reflect investors’ inability to sell these securities short. Although neither the SEC nor the

MSRB prohibits short sales, the IRS imposes a quasi-restriction in that it disallows both a

borrower and a lender of a muni to claim a tax exemption.24 Because the security lender

would effectively be trading tax exempt interest for taxable interest, the borrower would

incur the cost to make the lender whole. We have no evidence to suggest whether this friction

imposes greater constraint than the analogous equity short with a dividend payment, but

24The only mention of munis in the SEC’s publication on Regulation SHO is that the T+3 rule (settlement
must occur within 3 days of trade date) applies to municipal securities. MSRB Rule G-8(a)(iii) requires only
that all short trading positions be designated as such.
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concede that short sellers may face difficulty borrowing munis. To the extent that short sale

constraints inhibit price discovery, we argue that the significant negative CARs documented

in Table 5 and Figures 5 understate the eventual negative impact of the monoline distress on

insured munis. The fact that muni investors eventually sell affected bonds indicates that any

potential inefficiency due to short sale constraints cannot be the entire story.

So, what prevents “smart money” from capitalizing on the uninformed retail investors

and improving the informational efficiency of this market? We believe the limits to arbitrage

follow from the relatively high transactions costs (see e.g., Harris and Piwowar (2006), Green

et al. (2007), and Schultz (2012)) coupled with the relatively low yields in this tax exempt

market. Indeed, smart money did capitalize on the inflated credit ratings of MBIA and

AMBAC (see footnote 2 regarding Pershing Square Capital’s big short) in the equity and

CDS markets which offer higher potential gains and lower transaction costs. We conclude

that this market’s operational inefficiency aggravates its informational inefficiency.

8 Conclusion

Financial regulators and policymakers have long been concerned with protecting individual

investors participating in financial markets. The operational and informational inefficiency of

the municipal bond market is of particular concern.

Affirming this concern, we find robust evidence that the retail-investor-dominated muni

market ignores relevant information that is readily available from other financial markets.

Specifically, we adapt a novel methodology to examine muni returns around the implosion of

the monoline insurance market. Investors holding munis with credit enhancement provided

by distressed insurers ignore information from the distressed issuers’ rapidly declining equity

values and sharply increasing CDS prices. Investors devalue their insured bonds with

significant delay following the insurers’ loss of Aaa certification. We consider a host of

alternative explanations for our empirical results and conclude that the muni market remains

highly segmented despite earlier regulatory efforts to improve transparency and efficiency.
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A Ratings and Mergers of Monoline Insurers

This appendix provides the history of restructuring and rating of monoline insurers (in
alphabetical order).

AMBAC
(Bankruptcy on 11/9/2010, emerged 5/1/2013)

12/14/2007 Affirmed Aaa with outlook stable
01/16/2008 Review for downgrade
02/29/2008 Comment on review for downgrade
03/05/2008 Comment on capital infusion (SEO for $1.5B at $6.75/share)
03/12/2008 Affirmed at Aaa with negative outlook
06/24/2008 Review for downgrade
06/19/2008 Downgrade to Aa3 with negative outlook
09/18/2008 Review for downgrade
11/05/2008 Downgrade to Baa1
03/03/2009 Review for downgrade
07/29/2009 Downgrade to Caa2
06/08/2010 Announces bankruptcy
10/01/2010 Rehabilitation by Wisconsin
11/09/2010 Files for bankruptcy
11/23/2010 Confirms Caa2
05/01/2013 Exits bankruptcy (senior 15 cents recovery; unsecured 10 cents recovery)

ASGC
(Assured Guaranty Corp; IPO 5/6/2004; announced acquisition of FSA 11/2008, completed
7/2009, became AGM)

05/06/2004 Initial rating of Aa1
06/27/2006 Affirmed Aa1 with positive outlook
03/16/2007 Review for upgrade
07/11/2007 Upgraded to Aaa
12/14/2007 Affirmed Aaa
03/14/2008 Affirmed Aaa
07/21/2008 Review for downgrade
11/21/2008 Downgrade to Aa2
11/21/2008 FSA downgraded to Aa3
11/21/2009 Downgrade to Aa3 (FSA, now AGM affirmed at Aa3)
03/20/2012 Review for downgrade
01/17/2013 Downgrade to A2 for AGM, Assured Guaranty to A3
06/01/2013 MAC (Municipal Assurance Corp formed)
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ASGTY
(Acquired by Radian Group in 2001, merged to Radian Asset Assurance 6/2004)

BAM
(Build American Mutual, founded 2012; rated AA by S&P, not rated by Moody’s)

CIFG
(Merged into AGO on 7/2016)

FGIC
(Financial Guaranty Insurance Company, placed into rehabilitation 11/24/2009)

12/14/2007 Affirmed Aaa, review for downgrade
02/14/2008 Downgrade to A3
03/31/2008 Downgrade to Baa3
06/20/2008 Downgrade to B1
10/24/2008 Review for downgrade
12/19/2008 Downgrade to Caa1
03/24/2009 Downgrade to Caa3
11/24/2009 Rehabilitation by NY (muni portfolio re-insured by MBIA)

FSA
(Financial Security Assurance, sold to Assured Guaranty 7/1/2009, changed to AGM)

12/14/2007 Affirmed Aaa with stable outlook
03/11/2008 Affirmed Aaa
07/21/2008 Review for downgrade
11/21/2008 Downgrade to Aa3
07/01/2009 Sold by Dexia to AGO
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MBIA
(Restructured 2/18/2009, forming NATL; reinsured FGIC on that date)

12/14/2007 Affirmed Aaa with negative outlook
01/17/2008 Review for downgrade
02/26/2008 Confirmed Aaa with negative outlook
06/19/2008 Downgrade to A2
09/18/2008 Review for downgrade
11/07/2008 Downgrade to Baa1
06/25/2009 Downgrade MBIA to Ba3; National affirmed at Baa1

NATL
(Formed from MBIA portfolio on 2/18/2009; novated FGIC on 8/19/2013)

06/25/2009 Affirmed at Baa1 with review for upgrade
12/19/2011 Downgrade to Baa2
05/21/2013 Upgrade to Baa1
05/21/2014 Upgrade to A3
05/26/2015 Affirmed at A3 with negative outlook
05/25/2016 Affirmed at A3

RADIA
(Merged into Assured Guaranty on 4/1/2015)

05/24/2004 Assigned Aa3
12/14/2007 Affirmed Aa3
03/28/2008 Affirmed Aa3 with outlook negative
06/25/2008 Downgrade to A3 (A2 for Radian Guaranty)
10/10/2008 Review for downgrade
03/12/2009 Downgrade to Ba1
11/22/2011 Downgrade to Caa1
04/17/2012 Downgrade to Caa2

XLCA
(Became Syncora, rehabilitation on 8/5/2008)

05/17/2008 Affirmed Aaa
02/07/2008 Downgrade to A3
03/04/2008 Review for downgrade
06/20/2008 Downgrade to B2 with outlook negative
10/24/2008 Downgrade to Caa1 (now Syncora)
03/17/2009 Downgrade to Ca
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B Construction of municipal bond return indices

The lack of liquidity in the muni market is a major problem bedeviling virtually all

research on secondary market behavior. It is important to measure bond portfolio returns

employing all available observations for all bonds in the portfolio, including those that do

not trade each day. The real estate literature provides helpful tools for this purpose as they

face a similar problem computing housing market returns: houses are likewise heterogeneous

assets that do not trade often. The two primary methods used in the real estate literature

are hedonic regressions and repeated sales regressions (RSR).

In hedonic regressions, we regress prices on asset characteristics and a time trend, which

then produces a set of value weights corresponding to the characteristics.25 Based on these

value weights, we can estimate the price for each asset on each day, from which we can

estimate a daily average index. However, this method is prone to model mis-specification

and requires a great deal of data on asset characteristics, many of which are unavailable. For

use in the muni market, liquidity is an important consideration with a sizable effect on trade

prices. However, controlling for bond-level liquidity in a hedonic regression implies that one

cannot use the regression to infer the price of non-traded bonds on a given day.

The RSR method makes use of pairs of trades to avoid any need for characteristics selection.

This method overcomes the disadvantages of the hedonic regression method, provided that

the quality of the assets does not change significantly and there is no cashflow between trade

dates (e.g.,Case and Shiller (1989)). In a typical RSR model, the dependent variable is the

change in price of an asset between two adjacent trades, and the independent variables are

time dummies. For each observation, the time dummies for the dates between adjacent trades

are equal to 1, and 0 otherwise. The model is estimated using generalized least squares (GLS),

in which the error variance is proportional to the duration since the last trade. Intuitively,

25Hill (2003) provides a helpful overview of hedonic regression for real estate indices.
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returns based on trades that are far apart carry less weight in the estimation than those

based on more frequent trades.

Spiegel and Starks (2016) and Robertson and Spiegel (2017) detail the many advantages

of the RSR method, which is especially attractive for our setting. However, two important

characteristics of bonds require some adaptation to the standard RSR if we are to apply

this method to computing municipal bond return indices. Unlike houses, bonds mature. For

example, a five-year bond issued six months ago is now a four-and-a-half-year bond, which is

arguably not the same asset as the asset traded six months ago. Secondly, there are regular

(typically semiannual) coupon payments associated with bonds. Spiegel and Starks (2016)

choose to discard pairs of trades with intervening coupon payments. In our setting, this is

untenable because (1) doing so necessitates discarding a large portion of our data, and (2)

large sample size is critical for reliable estimation of the indices.

We overcome the effects of bond maturing and coupon payments by working with bond

yields instead of bond prices.26 The RSR method is then applied on the change in yields

between adjacent trades, after adjusting for the change in duration of the bonds. That is,

the dependent variable in our model is duration-adjusted change in yield:

∆yi,b,s = −(Di,s × yi,s −Di,b × yi,b) (1)

where b and s are the times of the last trade and current trade respectively, while y and D

denote the yield to maturity and duration of a bond at a given time. The negative sign in

the above equation is necessary in order that this change approximates the return.27

One further consideration is how to deal with differing rates of returns that are correlated

with observable characteristics of bonds in an index. Most research since the mid-1990s has

focused on how to combine the hedonic and RSR methods (i.e. allowing the appreciation

26In many ways, this is similar to the adaptation of the RSR to estimate house rental indices, as in Ambrose
et al. (2015).

27Using continuously compounding approximation, we can write: Pi,s = e−yi,s×Di,s and Pi,b = e−yi,b×Di,b .
Thus, the log return between date b and s is: ri,b,s = log(Pi,s)− log(Pi,b) = −(Di,s × yi,s −Di,b × yi,b)
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across sub-groups to be heterogeneous). Spiegel and Starks (2016) is the latest application

of this approach to the corporate bond market. More specifically, they control for key

characteristics of a bond (maturity, industry, current yield) by creating a custom index for

each bond using data on bonds with similar characteristics (based on Euclidean distance

to the bond of interest). The idea is to more heavily weight the bond price appreciation of

bonds that are similar than that of bonds that are different. Once the observations on other

bonds are weighted based on this ‘similarity score’, the RSR method is used to produce a

benchmark return index for the bond.

For our study, we do not need a separate benchmark index for each bond. Our primary

purpose is to study the behavior of portfolios of bonds stratified by characteristics such as

rating and insurer. We therefore resort to a more parsimonious approach, and adapt the

Generalized Repeat Sales Regression method (GRSR) proposed by Peng (2012), to handle

heterogeneous rates of returns among different sub-groups of bonds within an index.28 The

idea is to (in the simplest setup) presume that each characteristic has a factor sensitivity to

the main price appreciation trend. The sample is partitioned into subgroups along chosen

characteristics. This method involves estimating jointly the common return index and the

differential factor loadings of the subgroups. From here, the index for each subgroup can be

reconstituted using the common index and the subgroup’s factor loading. This method is

particularly attractive when subgroups have thin data coverage for which the standard RSR

is not estimable. Furthermore, the method allows us to test for differential return dynamics

among subgroups.

We proceed as follows. We first compute bond return indices for different rating classes for

uninsured bonds. We use the rating of bonds at the time of trade to determine which index

they belong to. These indices provide useful benchmarks for the insured bonds with similar

underlying credit quality. Since we have sufficient data in each rating class for uninsured

bonds, we compute these indices straightforwardly using the standard RSR method.

28The original application was to calculate different return indices for real estate sub-markets stratified by
final sales price.
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Next, we compute the return index for bonds insured by the following major insurers

before the crisis: MBIA, AMBAC, FSA, and FGIC. The portfolio of bonds insured by a

given insurer is homogeneous in terms of carrying the same insurance wrap. However, they

differ in underlying credit quality, and an interesting question is whether the market prices

them similarly purely due to the insurance. For instance, does a Baa credit price the same as

an Aa credit if both are wrapped by the same insurance company? Thus, for each insurer,

we apply the GRSR to estimate a common return index for all bonds insured by the said

insurer, as well as the loadings for the different underlying credit rating classes.

Specifically, denote RI
m,t the expected return for all bonds in the portfolio of insurer I

(where I = {MBIA, AMBAC, FSA, FGIC}). The portfolio is partitioned by underlying

credit rating classes. For each rating class l, denote by τl,t the sensitivity of returns of bonds

in rating class l to the return of the overall portfolio (we suppress the superscript I for

simplicity). The GRSR model is:

∆yi,b,s =
s∑

t=b+1

τl,tRm,t +
s∑

t=b+1

εi,t (2)

We choose the most general parameterization of τl,t to allow for time-varying factor

loadings, as in Peng (2012). That is, τl,t = τ1,l + τ2,lRm,t. A negative τ2,l indicates that a

rating class becomes more sensitive to the overall portfolio in bad times, but less sensitive to

the overall portfolio in good times.

We estimate the GRSR model specified in Equation (2) with an iterative Expectation-

Maximization (EM) algorithm outlined in Peng (2012). First, assigning starting values of

τ1,l = 1 and τ2,l = 0, we estimate Equation (2) by GLS and obtain the overall index Rm,t

(which are the coefficients on the time dummies). Second, we run a separate regression for

each rating class (where the estimated Rm,t is plugged into Equation (2) to estimate the

sensitivity coefficients τ1,l and τ2,l). The process is repeated until convergence. Based on the

final estimates of Rm,t and factor loadings, we construct the return index for each rating class
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within each insurer’s portfolio. For example, for MBIA, apart from the overall return index

for all MBIA-insured bonds, we have five sub-indices of returns corresponding to Aaa, Aa, A,

Baa, and non-rated bonds.

To facilitate various hypothesis tests on estimated returns, we follow Peng (2012) to

produce bootstrapped sampling distributions for our return estimates. Specifically, we draw

a random sample of repeated bond trades with replacement from our data sample so that

the drawn sample has the same size. We then use this sample to estimate bond returns and

obtain one set of return estimates. We repeat this procedure 500 times, which results in 500

sets of return estimates. Statistical tests in the paper are based on standard errors computed

from these bootstrapped sampling distributions.

Finally, due to computational constraints, we cannot estimate all the above indices for the

entire sample period, so we break the sample period into smaller sub-periods and estimate

the indices for each sub-period individually. A feature of the RSR model is that the number

of observations available at the beginning and end of the estimation period is low, rendering

estimates for these parts of the estimation period unreliable. To mitigate this problem,

we follow the strategy of Spiegel and Starks (2016) by estimating the indices on a rolling

three-year window. In each three-year window, we keep only the estimates for the middle

year, discarding estimates for the first year and third year. Thus, with trade data available

from 2005, our indices start in 2006. For our empirical study, we construct these indices only

through the end of 2009 for reasons explained in Section 5.3. Table B1 below reports the

number of trade pairs occurring during the 2005-2010 period that are used in estimating each

credit-quality-insurer index.

Since our sample period bridges the financial crisis, a concern could be that the composition

of the tradeable market for municipals changes over the period. For instance, if there were

few to no trades in low-rated munis after the crisis but such trades were common before the

crisis, then the precision of the estimates might predictably vary. Our rolling window method

(dropping the early and late periods) mitigates this effect somewhat. We also examine the
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Table B1: Number of observations (trade pairs) used in estimation of return indices

Uninsured MBIA AMBAC FSA FGIC

Aaa 245,787 4,053 443 15,501 2,057
Aa 506,469 249,882 42,875 152,143 57,406
A 210,772 242,445 50,335 164,830 54,433
Baa 35,519 36,901 11,004 34,934 8,230
Ba 420 2,796 1,194 1,390 487
Non-rated 62,312 51,842 14,682 42,167 20,762

number of trades by rating and year in Table B2 below and find little variation over time.

Therefore, our return indices are not driven by changes in the frequency of trades by rating

class through time.
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Table B2: Trade composition by trade year and rating

Year Aaa Aa A Baa NIG NR

Panel A: Non-insured Bonds

2005 50267 98429 62913 9330 22 12683
2006 56944 108730 63592 7779 18 12471
2007 64520 112989 55409 7525 2 10121
2008 77937 190231 79859 10899 101 9954
2009 68050 183227 68495 30026 252 11966
2010 87196 182248 65330 19131 278 13709
2011 94440 207438 65750 6557 228 12284
2012 74494 176585 54442 11599 209 9572
2013 96656 232266 62364 12598 138 29207
2014 84509 226973 31154 7839 289 26198
2015 82334 252532 27982 5114 3477 12946
2016 35795 115762 19939 2163 2629 2735

Panel B: Insured Bonds

2005 13679 101013 132166 25682 1589 34858
2006 12499 114025 144021 27747 1505 35421
2007 9090 133501 148709 27301 1234 34044
2008 6815 175855 165993 36041 2458 32898
2009 4023 158375 163570 39544 2681 27386
2010 7335 178726 130623 19603 3876 21105
2011 7880 187614 120166 17059 3124 15709
2012 5101 132768 81748 17197 3266 10231
2013 4318 118180 84479 18192 3621 8983
2014 2490 93902 52211 10793 1607 4152
2015 1803 77321 45471 4272 923 1607
2016 559 29444 19627 1279 1954 216
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Table 1: Municipal general obligation bonds issued by state and fraction insured

This table reports the number of municipal general obligation bonds issued by each state, and the fraction

within each state that are insured by a monoline insurer. Bond characteristics data are from Mergent

Municipal Fixed Income Securities Database (Mergent) as of 6/17/2016.

No. of Percent No. of Percent
State Bonds Insured State Bonds Insured

AK 2,719 63 MT 5,329 23
AL 736 24 NC 11,120 23
AR 3,292 8 ND 2,134 19
AZ 10,443 60 NE 14,821 7
CA 50,218 71 NH 4,803 46
CO 7,688 55 NJ 40,949 62
CT 21,848 36 NM 7,603 29
DC 467 68 NV 473 52
DE 816 25 NY 90,822 55
FL 3,742 43 OH 16,527 43
GA 5,289 22 OK 13,229 5
HI 2,142 57 OR 10,225 40
IA 22,389 32 PA 32,835 82
ID 3,128 45 PR 528 50
IL 33,505 55 RI 3,435 68
IN 6,817 28 SC 9,222 30
KS 18,658 28 SD 1,032 41
KY 3,166 37 TN 9,750 40
LA 10,113 54 TX 97,264 34
MA 18,681 54 UT 3,846 23
MD 7,027 16 VA 7,308 18
ME 4,612 32 VT 1,155 19
MI 27,886 48 WA 13,469 51
MN 46,135 22 WI 27,239 29
MO 14,645 21 WV 739 48
MS 10,521 17 WY 530 26

Sample size: 763,070
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Table 3: Differences in secondary market liquidity of GO bonds with and without insurance

The table shows secondary market liquidity metrics of insured bonds compared to non-insured bonds in

similar credit rating categories. Rating refers to the rating of bonds at issuance. Liquidity metrics are

computed from the MSRB database for the period from January 2005 to December 2016. The number of

bonds reported in columns (1) and (4) indicate the subset of bonds that trade during the MSRB data period.

Column (7) reports the difference in average liquidity between insured and non-insured bonds. Significance

at the 1%, 5%, and 10% level is denoted by ∗∗∗,∗∗, and ∗ respectively.

Non-Insured Bonds Insured Bonds

Rating # Bonds Mean StDev # Bonds Mean StDev Difference

(1) (2) (3) (4) (5) (6) (7)=(5)-(2)

Number of Trades Per Bond:
Aaa 21,415 30 67 503 30 73 0
Aa 54,815 30 85 26,203 37 112 7***
A 15,786 41 213 52,908 23 71 -17***
Baa 3,157 44 258 9,170 25 118 -19***
Non-rated 45,496 19 82 52,282 17 58 -2***

Average Trade Size Per Bond:
Aaa 21,415 281,796 939,469 503 194,709 331,883 -87,087***
Aa 54,815 215,277 849,184 26,203 211,516 909,100 -3,761
A 15,786 172,047 729,063 52,908 124,404 424,372 -47,643***
Baa 3,157 146,069 440,219 9,170 109,813 319,519 -36,257***
Non-rated 45,496 155,965 651,813 52,282 134,054 388,092 -21,910***

Percentage of Retail Trades:
Aaa 21,415 66.27 34.91 503 64.3 38.59 -1.96
Aa 54,815 69.13 34.57 26,203 70.73 33.21 1.6***
A 15,786 67.12 37.56 52,908 72.92 34.56 5.8***
Baa 3,157 69.03 39.76 9,170 73.55 35.99 4.52***
Non-rated 45,496 71.89 37.55 52,282 68.96 38.52 -2.93***
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Table 4: Tests of return divergence from true Aaa uninsured bonds

This table presents the F-statistics (F-stat) and the corresponding 95% χ2 critical values (c.v.) of tests of the

difference in cumulative return on bonds insured by an insurer versus that on true Aaa uninsured bonds.

A double-asterisk (∗∗) indicates that the deviation is significant at the 5% level. The tests are performed

for three sub-samples: 1) from the beginning of 2006 to the date of the insurer’s stock market distress, 2)

from the distress date to the downgrade date (off of Aaa rating), and 3) from the downgrade to the end

of 2009. The average return of bonds insured by each insurer is computed using the GRSR method. The

average return on true Aaa uninsured bonds is computed using the RSR method. Municipal bond trade data

are from the MSRB, bond characteristics data are from Mergent, and supplementary credit rating data are

collected from the rating agencies’ websites.

MBIA AMBAC

F-stat χ2 c.v. F-stat χ2 c.v.

Sub-sample 1: Prior to Distress Date 341.26 507.84 397.83 513.11
Sub-sample 2: From Distress to Downgrade Date 147.83 192.70 42.76 187.24
Sub-sample 3: After Downgrade Date 2889.16∗∗ 421.15 928.89∗∗ 421.15
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Table 5: Cumulative abnormal return around event dates

This table presents estimates of cumulative abnormal return (CAR, in %) of MBIA- and AMBAC-insured

bonds around the given insurer’s distress date in Panel A, and around the downgrade off of Aaa rating

in Panel B. The average return of bonds insured by each insurer is computed using the GRSR method.

The benchmark return is the return on true Aaa uninsured bonds. Abnormal return is accumulated over

various windows relative to the event date (time 0). Municipal bond trade data are from the MSRB, bond

characteristics data are from Mergent, and supplementary credit rating data are collected from the CRAs’

websites. Significance at the 1%, 5%, and 10% level is denoted by ∗∗∗,∗∗, and ∗ respectively.

Panel A: CARs around equity distress date

Pre-event window

[-20:-1] [-40:-1] [-60:-1] [-120:-1] [-250:-1]

CAR s.e. CAR s.e. CAR s.e. CAR s.e. CAR s.e.

MBIA −0.15 0.20 −0.20 0.20 −0.06 0.20 −0.13 0.22 −0.08 0.34
AMBAC −0.47∗ 0.31 −0.07 0.31 0.02 0.32 0.23 0.31 −0.10 0.52

Post-event window

[0:20] [0:40] [0:60] [0:120] [0:250]

CAR s.e. CAR s.e. CAR s.e. CAR s.e. CAR s.e.

MBIA 0.85∗∗∗ 0.36 −0.03 0.23 −0.23 0.39 −0.74∗∗ 0.39 −2.09∗∗∗ 0.42
AMBAC −0.15 0.31 −0.68∗∗ 0.40 −0.37 0.57 −0.34 0.61 −1.76∗∗∗ 0.61

Panel B: CARs around downgrade date

Pre-event window

[-20:-1] [-40:-1] [-60:-1] [-120:-1] [-250:-1]

CAR s.e. CAR s.e. CAR s.e. CAR s.e. CAR s.e.

MBIA −0.07 0.25 0.22 0.26 0.28 0.26 −0.34 0.42 −0.32 0.39
AMBAC −0.33 0.39 −0.27 0.39 −0.07 0.40 0.31 0.64 −0.25 0.60

Post-event window

[0:20] [0:40] [0:60] [0:120] [0:250]

CAR s.e. CAR s.e. CAR s.e. CAR s.e. CAR s.e.

MBIA −0.48∗∗ 0.27 −0.41∗ 0.28 −0.87∗∗∗ 0.29 −1.84∗∗∗ 0.29 −1.16∗∗ 0.52
AMBAC −0.74∗∗ 0.40 −0.79∗∗ 0.43 −0.15 0.47 −2.55∗∗∗ 0.47 −1.65∗∗ 0.82
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Table 6: Granger causality test of institutional and retail trade flows

This table reports the F-statistic of whether institutional trade flow Granger-causes retail trade flow, and

vice versa. The tests are based on a VAR model of daily net flow of institutional trades (i.e., trades sized at

or above $100,000) and retail trades (i.e., trades sized below $100,000). Daily net order flow is computed

as the total par value of buyer-initiated trades minus that of seller-initiated trades, standardized by total

trading volume. The order of the VAR is chosen based on Akaike Information Criteria (AIC). Panel A shows

the results for bonds collectively insured by MBIA and AMBAC. Panel B shows the results for uninsured

bonds for comparison. The full sample data include all secondary market trades in the MSRB database for

the period from 1/1/2006 to 12/31/2009. Sub-sample 1 is from the beginning of 2006 to the date of the

MBIA’s stock market distress. Sub-sample 2 is from the distress date to the downgrade date (off of Aaa

rating). Sub-sample 3 is from the downgrade date to the end of 2009. Significance at the 1%, 5%, and 10%

level is denoted by ∗∗∗,∗∗, and ∗ respectively.

Causality Direction Full Sample Sub-sample 1 Sub-sample 2 Sub-sample 3

Panel A: Insured Bonds

Institutional → Retail 8.162∗∗∗ 6.350∗∗∗ 2.181 7.891∗∗∗

Retail → Institutional 4.617∗∗∗ 5.598∗∗∗ 1.500 2.228

Order of VAR Model 3 2 2 1

Panel B: Uninsured Bonds

Institutional → Retail 2.614∗ 0.736 6.408∗∗∗ 0.285
Retail → Institutional 1.237 1.818 0.432 2.448∗

Order of VAR Model 3 3 2 2
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Table 7: Granger causality test of information transmission across markets

This table presents the results of Granger causality test of information transmission among the stock market,

the CDS market, and the market for municipal bonds insured by MBIA and AMBAC. The table reports the

F-statistic of whether the row variable Granger-causes the column variable. Significance at the 1%, 5%, and

10% level is denoted by ∗∗∗,∗∗, and ∗ respectively. The tests for both MBIA and AMBAC variables are based

on VAR model of order 1 (based on AIC), using data for the period from 2006 to 2009. “Insured Bond” is

the average daily return on municipal bonds insured by the given insurer. These returns are estimated using

the GRSR method and MRSB municipal bond trade data. “Stock Return” and “CDS Change” are the daily

stock returns and daily changes in the 5-year CDS premium of the given insurer, obtained from CRSP and

Datastream respectively.

Insured Bond Stock Return CDS Change

Panel A: MBIA

Insured Bond 1.687 1.665
Stock Return 0.075 55.352∗∗∗

CDS Change 0.031 0.052

Panel B: AMBAC

Insured Bond 0.047 0.000
Stock Return 0.002 44.400∗∗∗

CDS Change 0.982 3.123∗
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Table 8: Granger causality test of information transmission across markets

This table presents the results of Granger causality test of information transmission among the stock market,

the CDS market, and the market for municipal bonds insured by MBIA and AMBAC. The table reports

the F-statistic of whether the row variable Granger-causes the column variable. Significance at the 1%, 5%,

and 10% level is denoted by ∗∗∗,∗∗, and ∗ respectively. The tests are based on a VAR of order 2 (based on

AIC) of the six variables, using data for the period from 2006 to 2009. “ABK-Bond” and “MBIA-Bond” are

the average daily return on municipal bonds insured by AMBAC and MBIA respectively. These returns are

estimated using the GRSR method and MRSB municipal bond trade data. “ABK-Stock” and “MBIA-Stock”

are the daily stock returns of AMBAC and MBIA respectively, sourced from CRSP. “ABK-CDS” and

“MBIA-CDS” are the daily changes in the 5-year CDS premium of AMBAC and MBIA respectively, obtained

from Datastream.

ABK-Bond ABK-Stock ABK-CDS MBI-Bond MBI-Stock MBI-CDS

ABK-Bond 0.838 2.234 10.257∗∗∗ 1.124 0.655
ABK-Stock 0.827 4.333∗∗ 1.129 0.674 0.447
ABK-CDS 0.271 0.567 0.463 1.235 1.637
MBI-Bond 36.394∗∗∗ 0.451 1.715 1.131 1.566
MBI-Stock 1.013 2.226 2.134 2.212 11.828∗∗∗

MBI-CDS 1.766 4.789∗∗∗ 21.232∗∗∗ 0.616 0.659
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Panel A: All GO Bonds
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Panel B: Insured GO Bonds
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Figure 1: Underlying credit quality by issue year

This figure shows the distribution of underlying credit quality of GO bonds issued between 1990 and 2016.
Panel A is based on all GO bonds. Panel B is based on insured GO bonds. Bond characteristics data are
from Mergent Municipal Fixed Income Securities Database.
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Panel A: Cumulative Stock Return
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Panel B: 5-year CDS Premium
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Figure 2: Time series of stock return and CDS premium of MBIA and AMBAC 2006-2008

This figure shows the time series of cumulative stock return and 5-year CDS premium of MBIA and AMBAC
from 2006 through 2008. Stock return data are from CRSP and CDS data are from Datastream.
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Figure 3: Time series of cumulative bond returns 2006-2009

This figure shows the time series of cumulative returns of true Aaa uninsured bonds versus those of MBIA-
and AMBAC-insured bonds from the beginning of 2006 through the end of 2009. Bond returns are estimated
by the GRSR method using trade data from the MRSB.

52



Panel A: MBIA

2006 2007 2008 2009 2010
-2

0

2

4

6

8

10

12

14

16

18

C
u

m
u

la
ti
v
e

 R
e

tu
rn

 S
in

c
e

 1
/1

/2
0

0
6

 (
%

)

D
is

tr
e

s
s
 D

a
te

D
o

w
n

g
ra

d
e

: 
A

a
a

 t
o

 A
2

D
o

w
n

g
ra

d
e

: 
A

2
 t

o
 B

a
a

1

D
o

w
n

g
ra

d
e

: 
B

a
a

1
 t

o
 B

a
3

Aaa

Aa

A

Baa

Panel B: AMBAC
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Figure 4: Cumulative returns of insured bonds by rating class 2006-2009

This figure shows the time series of cumulative return of insured bonds by rating classes. Bond returns by
rating classes are estimated by the GRSR method using trade data from the MRSB. Because MBIA was able
to sell insurance to 121 Aaa-rated bonds, while AMBAC only to 4, we are able to reliably estimate the Aaa
bond return index for MBIA but not for AMBAC.
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Figure 5: Cumulative abnormal returns of insured bonds 2006-2009

This figure shows the time series of cumulative abnormal return (CAR, in %) of insured bonds from 2006
through 2009. Returns are benchmarked by the returns of true Aaa uninsured bonds, and accumulated since
the beginning of 2006. Bond returns are estimated by the GRSR method using trade data from the MRSB.
The shaded area represents the 90% bootstrapped confidence band around the estimated CAR. Two vertical
lines mark the equity distress date and downgrade date in that order.
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Institutional Trade Volume around Distress Date
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Retail Trade Volume around Distress Date
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Institutional Trade Volume around Downgrade Date
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Retail Trade Volume around Downgrade Date
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Figure 6: Institutional and retail trading activity in MBIA bonds around event dates

This figure shows daily trading volume of institutional and retail investors around two event dates: the equity
distress date and downgrade date. Trades are classified as institutional if they are sized $100,000 and above.
Trades that are smaller than $100,000 are classified as retail. Trade data are from the MSRB.
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Figure 7: Institutional-to-retail sell volume ratio

This figure shows daily ratio of institutional sell volume to retail sell volume. Two vertical lines mark the
equity distress date and downgrade date in that order. Trades are classified as institutional if they are sized
$100,000 and above. Trades that are smaller than $100,000 are classified as retail. Trade data are from the
MSRB.
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Figure 8: Information transmission across markets related to MBIA

This figure shows the impulse response function (IRF) of variables in a VAR(1) model of stock returns,
changes in CDS premium, and returns on bonds insured by MBIA. The response variable is noted with (R),
and the shock variable is noted with (S). The shock size is one standard deviation in the shocked variable.
The dotted lines represent the point-wise 90% bootstrapped confidence band around the estimated impulse
responses. “Stock Return” and “CDS Change” are the daily stock returns and daily changes in the 5-year
CDS premium of the given insurer, obtained from CRSP and Datastream respectively. Bond returns are
estimated by the GRSR method using trade data from the MRSB.
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Institutional Trade Volume
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Retail Trade Volume
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Figure 9: Institutional and retail trading activity in bonds insured by MBIA and AMBAC
around Lehman Brothers’ bankruptcy

This figure shows daily trading volume of institutional and retail investors around Lehman Brothers’
Bankruptcy on September 15, 2008. Trades are classified as institutional if they are sized $100,000 and above.
Trades that are smaller than $100,000 are classified as retail. Trade volume is aggregated across all bonds
insured by MBIA and AMBAC. Trade data are from the MSRB.
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