

Studying Rotavirus Vaccines and Intussusception in Mini-Sentinel

W. Katherine Yih, PhD, MPH
Harvard Pilgrim Health Care Institute and
Harvard Medical School
January 31, 2013

Rotavirus vaccines

- Rotashield licensed in August 1998
- □ In 1999, Rotashield voluntarily withdrawn due to increased risk of intussusception
 - Excess risk: 1-2 cases/10,000 vaccine recipients
 - Risk highest 3-7 days after Dose 1
- □ RotaTeq (2006) and Rotarix (2008) licensed after clinical trials with >60,000 infants

Post-licensure studies, RotaTeq & Rotarix Dose 1, 1-7 d after vaccination

1 st author, date	Site, system	1 st doses	No. of cases	RR (95% CI)
RotaTeq				
Buttery 2011	Australia	115,657	3	5.3 (1.1, 15)
Haber (abstract) 2011	U.S., VAERS	n.a.	66	1.5 (0.96, 2.3)
Shui 2012	U.S., VSD	309,844	1	1.2 (0.03, 6.8)
Rotarix				
Buttery 2011	Australia	163,709	3	3.5 (0.7, 10)
Patel 2011	Mexico	n.a.	24	5.3 (3.0, 9.3) 5.8 (2.6, 13)
Velázquez 2012	Mexico	n.a.	56	6.5 (95.5% CI 4.2, 10)

Post-licensure studies, RotaTeq & Rotarix Dose 1, 1-7 d after vaccination

1 st author, date	Site, system	1 st doses	No. of cases	RR (95% CI)
RotaTeq				
Buttery 2011	Australia	115,657	3	5.3 (1.1, 15)
Haber (abstract) 2011	U.S., VAERS	n.a.	66	1.5 (0.96, 2.3)
Shui 2012	U.S., VSD	309,844	1	1.2 (0.03, 6.8)
Rotarix				
Buttery 2011	Australia	163,709	3	3.5 (0.7, 10)
Patel 2011	Mexico	n.a.	24	5.3 (3.0, 9.3) 5.8 (2.6, 13)
Velázquez 2012	Mexico	n.a.	56	6.5 (95.5% CI 4.2, 10)

Rotavirus vaccine doses in Mini-Sentinel study (for period for which charts reviewed, through 6/2011 maximum)

	1st doses	All doses
RotaTeq	507,874	1,277,556
Rotarix	53,638	103,098

Intussusception case-finding algorithm

First-ever of any of these in ED or inpatient setting:

- ICD-9 560.0 (intussusception)
- ICD-9 543.9 (unspec. diseases of appendix, including intussusception)
- CPT 74283 (therapeutic enema, contrast or air, for reduction of intussusception or other intraluminal obstruction)

Chart review

- Purposes:
 - To confirm intussusception diagnoses
 - To confirm rotavirus vaccination (specific vaccine, dose, age) of intussusception cases
- Standardized chart abstraction and adjudication forms
- Pediatrician adjudicators reviewed chart material to determine if cases found by algorithm truly intussusception
- Adjudicators blinded to vaccination status

Chart review metrics

Cases are from whole infant population and include unexposed

Designs and analysis approaches

- Vaccinated infants only (self-controlled risk interval)
 - Uses just vaccinated cases with intussusception in either pre-specified risk interval or comparison interval
 - Analysis by logistic regression
- □ All infants (cohort)
 - Uses exposed and unexposed person-time of whole infant population
 - Analysis by Poisson regression

Intussusception incidence by age

from Tate et al. Pediatrics 2008;121:e1125-e1132

Intussusception incidence by age

from Tate et al. *Pediatrics* 2008;121:e1125-e1132

Self-controlled risk interval design

■ Each subject serves as own control; adjusts for individuals' characteristics that don't change

□ Adjust for age-specific risk of intussusception using logistic regression with offset term

Cohort design

■ Uses exposed and unexposed person-time in 1st year of life from whole population

□ Adjust for age-specific risk of intussusception using Poisson regression with polynomial risk function

Complementarity of designs

Design	Pros	Cons
Self-controlled	Controls well for fixed risk factors, e.g. race/ethnicity	Requires accurate age-specific incidence for age adjustment
Cohort	Higher statistical power; extrinsic background rates not needed	Could be affected by residual confounding

MINI-SENTINEL METHODS

FRAMEWORK FOR ASSESSMENT OF SIGNAL REFINEMENT POSITIVE RESULTS

Prepared by: David L McClure, PhD¹, Marsha A Raebel, PharmD, BCPS, FCCP^{2,3}, W Katherine Yih, PhD, MPH⁴, Azadeh Shoaibi, MS, MHS⁵, Jerry Mullersman, MD, PhD, MPH⁶, Colin Anderson-Smits, MPH⁷, Rita Ouellet-Hellstrom, PhD⁵, Aloka Chakravarty, PhD⁵, Clara Kim, PhD⁵, Jason M Glanz, PhD²

<u>www.mini-sentinel.org/work_products/Statistical_Methods/Mini-Sentinel_Methods_Framework-for-Assessment-of-Signal-Refinement-Positive-Results.pdf</u>

Concern	To address concern
1. Data validity	Examine descriptive statistics in detail
2. Systematic bias	
a. Misclassification	
i. Of exposure	Review charts to confirm RV exposure (type, dose number) Use 2 risk windows, 1-7 d and 1-21 d
ii. Of outcome	Review charts to confirm intussusception
b. Selection bias	Use exposed and unexposed person-time from same people (with self-controls and with the cohort)
c. Confounding	Use SCRI analysis to adjust for fixed risk factors Use multivariate adjustment in regression modeling Age: Adjust for age in all analyses, using either age-
	specific incidence from literature or in M-S data

List of concerns adapted from Mini-Sentinel Framework for Assessment of Positive Results (1st of 2 slides)

Concern	To address concern
3. Magnitude of influence of systematic error on risk estimates	Quantitative bias analysis <u>Examples</u> :
	Re-do analyses including possible cases (neither confirmed nor ruled out)
	Re-do analyses taking into consideration cases whose charts were not obtained

Additional secondary analysis: examine pattern in timing of onset after vaccination, using age-adjusted temporal scan statistics

Adapted from Mini-Sentinel Framework for Assessment of Positive Results (2nd of 2 slides)

☐ Final results available by fall 2013